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Changes in diffusion through the brain extracellular space
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ECS (extracellular space) works as the microenviron-
ment of brain cells. Diffusion through ECS may be des-
cribed through an effective diffusion coefficient, De,
which in turn depends on ECS porosity, ε, and tortuo-
sity, T. In the present research, diffusion data together
with ε and T were collected from the specialized litera-
ture and analysed to seek a correlation of T versus ε. On
the basis of De data, upper and lower T boundaries were
defined and related to topologically ‘dense’ and ‘loose’
cell arrangement. A possible range for T variation was
obtained for ECS, with ε ranging from 0.05 to 0.6.
A tortuosity index (n) in the form of T and ε logari-
thmic ratio was introduced. This index may be adopted
for recalculation of T or ε if only one of these para-
meters is known. As a result of data analysis and model-
ling, it was concluded that, upon different external con-
ditions, for instance oxygen depletion, the ECS porosity
decreases and cells (presumably through membrane
rearrangements) adjust the void space to keep the
diffusion within a defined range, which gives the living
tissue the ability to maintain the diffusion level up to
two or more times higher than in conventional granu-
lar bed packing. Thus, even with a dramatic ECS
decrease, the cellular system is still able to support
a given diffusion by decreasing the value of T. The
obtained results clearly show the existence of three
data clusters: a region of normal brain functioning,
both for young and adult brains, for values of ε com-
prised between 0.15 and 0.30, and two regions of
abnormal brain behaviour to the left and to the right
of the normal region, corresponding to different states
(aging, tumours, anoxia, brain death, etc.). The present
approach allows defining the optimal range of ε and
T to assure the best ECS diffusion efficiency for a
specified macromolecule. This might be important in
brain clinical treatment.

Introduction

Brain ECS (extracellular space) plays an important role
in many processes related to brain activity. ECS occupies
about 20 % of nervous tissue volume and serves as the
microenvironment of nerve cells. An example of ECS

geometry is shown, for instance, in [1]. Chemical species
such as ions, metabolites, peptides, neurohormones and
other neuroactive substances and molecules circulate in
ECS. ECS directly or indirectly affects neuronal and glial
cell functions and serves as an important communication
channel [2–4].

Diffusion through ECS may be described through an
effective diffusion coefficient, De, which in turn depends on
ECS porosity or ECS volume fraction, ε, and on tortuosity
T. Tortuosity may be defined as the ratio between the
average pathway of a moving object, for instance, a diffusing
molecule, to the minimal possible distance between the inlet
and the outlet points of the diffusion medium [5–7].

Modelling diffusion through brain tissue is more
complicated than the case of diffusion in porous media, for
several reasons: (1) ECS has a rather complicated phys-
ical three-dimensional structure; (2) brain tissue responds
dynamically to changes in environmental conditions; and (3)
there is increasing evidence of selective segregation of
large molecules that might exclude them from certain ECS
regions. Finally, ECS and ε change drastically in several
pathological states. The complicated structure of the ECS
makes it difficult to build theoretical models for diffusion in
this case.

A large set of experimental data on diffusion in ECS
for different physiological conditions has been accumulated
in the specialized literature and may serve to propose a
generalized approach.

In the present research, brain diffusion data together
with ε and T were collected and analysed in the form of a
T-versus-ε correlation in order to compare them with the
diffusion data of mineral materials where the dependence
of the porosity on tortuosity may be defined by two
parameters, one of which usually is assumed to be constant.
Further on, an attempt to correlate the results obtained
with several brain pathological states will be made in order
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to see whether those results might help define the kind
of macromolecule suitable to deal with each pathological
situation.

Theory

Diffusion and tortuosity
Tortuosity is usually obtained from diffusion experiments.
Nicholson and Rice [8] confirmed that Ca2+ diffusion is
mainly influenced by the tortuosity of the tissue rather than
by other factors such as binding to extracellular charge sites
or uptake.

To characterize the interstitial space in rat brain cortex
under normal conditions and during arrest of blood supply,
Lundbaek and Hansen [9] used a microelectrode method.
It appears that two characteristics, the interstitial volume
fraction ε and the tortuosity, govern solute transport in the
interstitial space. Under control conditions, the interstitial
volume fraction was 0.18 +− 0.02, whereas it decreased to
0.07 +− 0.01 in ischaemia. The tortuosity was 1.40 +− 0.05
in controls and increased to 1.63 +− 0.09 during ischaemia.
The measurements demonstrated that arrest of blood
supply changes interstitial diffusion characteristics of brain
cortex mainly by diminishing the interstitial diffusion space.
In a similar experiment [10], the following values were
measured respectively: ε = 0.20 +− 0.019, T = 1.62 +− 0.12.
However, for ε = 0.05 +− 0.021 the tortuosity increased to
T = 2.00 +− 0.24. No further changes in ε were found during
and up to 120 min after the animal’s death. Eventually,
tortuosity increased significantly to T = 2.20 +− 0.14.

Using ion-selective microelectrodes, Krizaj et al. [11]
determined the extracellular-volume fraction and tortuosity
of the cerebellum granular layer, from measurements of
ionophoretically induced diffusion profiles of TMA+ (tetra-
methylammonium). The measured volume fraction, i.e.
porosity, was 0.22 in normal saline, 0.12 in hypotonic
medium and 0.60 in hypertonic medium. Tortuosity values
were, respectively, 1.70 in the normal saline, 1.79 in the
hypotonic medium and 1.50 in the hypertonic medium. A
similar range of the average brain tortuosity was reported
in numerous studies and reviews [1,4,12–17].

It should be underlined that the structure of the ECS,
in spinal cord especially, gives rise to spatial anisotropy [18].
Rice et al. [12] measured extracellular diffusion properties in
three orthogonal axes of the molecular and granular layers
of isolated turtle cerebellum with the use of iontophoresis of
TMA+. Diffusion in the ECS of the molecular layer is known
to be anisotropic. The x- and y-axes are in the plane parallel
to the pial surface of this lissencephalic cerebellum with the
x-axis in the direction of the parallel fibres. The z-axis is
perpendicular to this plane. The average tortuosity values
obtained were Tx = 1.44, Ty = 1.95 and Tz = 1.58. In turn,

the granular layer was isotropic with a single tortuosity value
of 1.77. The molecular layer had ε = 0.31 +− 0.01, whereas in
the granular layer ε = 0.22 +− 0.01. The schematic anisotropic
structure of the ECS is shown, for instance, in [19].

Diffusion and tortuosity in the isolated rat spinal cord
were investigated by Prokopova et al. [20]. Diffusion in
grey matter remained isotropic (T = 1.65), whereas in white
matter it became anisotropic, i.e. diffusion is easier along the
fibres (T = 1.38) than across the fibres (T = 1.80). Further
measurements confirmed the tortuosity anisotropy in the
rat brain to be in the range of 1.46–1.72 [21,22].

Assaf and Cohen [23] used magnetic-resonance images
to compute in vitro water displacement in rat spinal cord
[24]. They found that changes in the diffusion characteristics
of white matter upon maturation are responsible for the
emergence of grey/white matter contrast. Brain extra-
cellular tortuosity in different conditions was investigated
in the work of Pfeuffer et al. [25]. A wide range of tortuo-
sity and porosity values was found after cardiac arrest.

All the above-mentioned results point out that the
tortuosity/porosity interplay in ECS under various external
conditions must be carefully analysed. This was the aim of
the present work.

Diffusion of molecules of different molecular mass
The substantial changes observed in the diffusion parameters
could affect the diffusion and aggravate the accumulation
of ions, neurotransmitters, metabolic substances and drugs
used in therapy of nervous diseases and thus contribute
to ischaemic central-nervous-system damage [10]. The dif-
fusion properties of TMA+, a relatively small ion with an
apparent molecular mass of 75 Da, can be compared
particularly with those of biologically important ions and
neurotransmitters. However, the diffusion parameters of
substances with greater molecular mass, such as glucose
(180 Da), ATP (500 Da), various neurohormones and
neuropeptides (e.g. dynorphin, substance P, galanin, which
are 1000–3000 Da) and nerve growth factor (≈ 40 000 Da),
could be altered in both ‘early’ and ‘late’ stages of ischaemia.

It was found that dextran molecules of 3 or 10 kDa
diffuse in the rat cortex the same way as TMA+, whereas 40
and 70 kDa dextrans diffuse significantly more slowly [26].
The diffusion coefficient of dextran in agarose gel, Dg, and
the apparent diffusion coefficient, De, in brain tissue were
determined. Values of the tortuosity, T = (Dg/De)1/2, for the
3 and 10 kDa dextrans were 1.70 and 1.63, respectively,
which were consistent with previous values derived from
TMA+ measurements in cortex. Tortuosities for the 40 and
70 kDa dextrans are significantly larger, with values of 2.16
and 2.25, respectively. This suggests that the ECS may have
local constrictions that hinder the diffusion of molecules
above a critical size that matches the size range of many
neurotrophic compounds. As was pointed out by Nicholson
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and Syková [1], there is increasing evidence of selective
‘filtering’ of large molecules that might exclude them from
certain regions of the ECS.

Tao and Nicholson [27] measured the effective diffusion
coefficient in rat cortical slices and compared it with the
diffusion coefficient in gel, Dg, for three negatively charged
proteins, lactalbumin (14.5 kDa), ovalbumin (45 kDa) and
BSA (66 kDa). From these data the tortuosity, T = (Dg/De)1/2,
was calculated, with a value of 2.24 for lactalbumin, 2.50 for
ovalbumin and 2.26 for BSA. The results show that proteins
as large as BSA may diffuse through brain ECS, but their
diffusion is more hindered than smaller molecules such as
TMA+ or penicillin, for which T = 1.62 [28].

To understand what factors contribute to the overall
tortuosity, experimental measurements of the diffusion of
neuroactive molecules in brain tissue were made [14].
Results show that substances confined to the ECS diffuse
more slowly than in free solution for two reasons [29].
On the one hand, cellular obstacles increase the pathlength
that molecules need to travel; this is the conventional inter-
pretation of tortuosity, normally known as geometrical
tortuosity. On the other hand, viscous interactions with
extracellular macromolecules and stationary cell walls also
slow down diffusion. Both geometric and viscous compo-
nents of tortuosity determine the overall value of T.

Thus far it has not been clear what component of
tortuosity may be allocated to cellular obstacles and what
component represents the interactions with the extra-
cellular medium (‘geometric’ and ‘viscous’ tortuosity
respectively). The work of Rusakov and Kullmann [14]
provided some numerical simulations of ECS diffusion. It
seems that for molecules with a size comparable with the
extracellular cleft, the predominant effect is the viscous drag
of cell walls. For small diffusing particles, in contrast, the
macromolecular obstacles in the ECS retard diffusion.
The main parameters relating the diffusion coefficient with-
in the extracellular medium to the one in free solution are
the intercellular gap width and the volume fraction occupied
by macromolecules. The upper limit of tortuosity for small
molecules predicted by this theory is around 2.2 (implying a
diffusion coefficient approximately five times lower than the
bulk diffusion found in free medium).

In the work of Rusakov and Kullmann [14], exper-
imental data were fitted with the help of the ‘adjustable’
parameter N, representing the volume fraction occupied by
large extracellular macromolecules. However, the resulting
fitting functions in that work are not well adjusted to ex-
perimental data. An alternative would be to relate the
‘viscous’ part of the tortuosity, used in [14], with the con-
ventional complex parameter in hindered diffusion models
[30,31].

According to the approach described in [32,33], an
overall tortuosity can be obtained by the combination of

the two tortuosity types and is formulated as:

T = TgTv = (D0/De)1/2 (1)

where Tg is the ‘geometrical’ part of overall tortuosity, T,
and Tv is the ‘viscous’ part of the tortuosity.

Since the viscous component of tortuosity is difficult
to characterize, it is better to use the hindered diffusion
approach, as we shall discuss below.

Hindered diffusion
As we mentioned above, it is necessary to separate the
geometrical tortuosity, which is usually constant (or fixed)
for some given conditions, from other effects arising during
diffusion [7,34], when the ratio (D0/De)1/2 is used for diffusion
analysis. Usually, besides geometrical tortuosity, another
tortuosity term is added, named viscous tortuosity. As we
shall see, the hindered diffusion concept is well adapted to
explain the differences in diffusion encountered in several
real situations, such as in ECS diffusion [30,35].

Two kinds of approach may be used to describe
hindered diffusion. The first one [36,37] is used when we
consider diffusion in porous media on a microscopic scale,
which may be represented by the equation:

De = D0

(
ε/Tg

2
)

F 1(λ)F 2(λ) (2)

where λ= aE/r0, in which aE is the Einstein radius of the dif-
fusing molecule and r0 is the pore radius; Tg is the geometrical
tortuosity, which is a function of porosity, Tg = Tg(ε). F1(λ)
and F2(λ) are correction factors based on the interaction
between solute and solvent molecules with the pore.
Function F1(λ) is the steric partition coefficient, which is
defined as the cross-sectional area of the pore available to
the solute molecule divided by the total cross-sectional area
of the pore. It is defined by:

F 1(λ) = (1 − λ)2 (3)

The correction factor F2(λ) accounts for the effect of the
pore wall on the solvent properties and is often represented
by a series or an exponential function [30,31,36,38,39]. One
of the more frequently used relationships is given by Deen
[31]:

F 2(λ) = 1 − 2.1044λ + 2.089λ3 − 0.948λ5 (4)

The second approach is to consider diffusion in a single
pore channel (microscopic scale). Hence ε = 1.0, but often
the parameter 1/Tg is neglected [35,40], assuming a straight
cylindrical pore:

Dep = D0 F 1(λ)F 2(λ) (5)

where Dep is the effective diffusion coefficient in a porous
medium channel. When the pore channel is tortuous, the
representation of the effective diffusion coefficient must be
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Figure 1 Comparison of experimental data of [14] (�) with the model in
eqn (6)

Curve 1, tortuosity T = 1.57; curve 2, T = 1.67.

corrected to:

De = D0

(
1/Tg

2
)

F 1(λ)F 2(λ) (6)

By making the first part of eqn (6) as in eqn (1) we get:

(D0/De)1/2 = Tg/[F 1(λ)F 2(λ)]1/2 (7)

This means that the expression 1/[F1(λ)F2(λ)]1/2 plays a role
similar to the viscous tortuosity, as mentioned in eqn (1).

Nugent and Jain [35] reported that, in membrane pores,
linear dextran has a diffusion radius between one-third
and one-half of its aE. Furthermore, for linear random-
coil polymers, Deen [31] proposed to use in the hindered-
diffusion equation the radius 0.7aE. We may thus assume, as
a good estimation for the dextran radius, a value of 1/3 aE.
Let us now analyse the data of Rusakov and Kullmann [14],
shown in their paper as Figure 3(A), that represents the
dependence of (D0/De)1/2 on the size of dextran molecules.
Using the geometrical tortuosity calculated by the authors
to be T = 1.571 and 2r0 = 20 nm we have for the model
eqn (6), and assuming the validity of eqns (2), (3) and (4),
the dependence is shown in Figure 1 (curve 1). Experimental
points were borrowed from the original graph presented in
[14]. However, the best fit is obtained by curve 2, which
corresponds to T = 1.67.

The obtained result shows that, by introducing in
eqns (2)–(7) the parameters describing the diffusing mole-
cule conformation, it is possible to achieve a better
functional description of experimental data without making
use of the fitting parameter N. This is important for analysing
what molecule shape conformation is better, for example,
in drug delivery.

This model was also applied to data on diffusion in tu-
mours of different cell-density arrangement reported in [41].

Effective diffusion coefficients of dextran up to a molecular
mass of 2000 kDa (aE = 19 nm) and of liposomes up to
150 nm in diameter were measured in tumours U87 and
Mu89 obtained with different cell arrangements: a fast-
diffusion group [in CW (cranial window) tumours] and a
slow-diffusion group [in DC (dorsal chamber) tumours]. The
model described by eqn (1) did not fit the experimental
results. In turn, the estimations based on the hindered-
diffusion model, eqn (6), give a quite reasonable approach.
By using the values of 60–75 nm of interfibrillar half-spacing
r0, located in the ECS, and model (6), we have for 2000 kDa
dextran a diffusion decrease in DC tumours in the order of
0.01–0.03 D0, which matches the experimentally measured
De bounds. The estimation from a micrograph contained in
[41] gave, for CW tumours, r0 = 200–250 nm. Therefore,
for liposomes of aE = 75 nm we get a decrease in diffusion
to 0.08–0.15 D0, which again falls inside the experimentally
measured range. These results show the influence of the
tortuosity viscous component.

Let us look to what happens with diffusion of small
molecules through the brain ECS.

Modelling diffusion of small molecules through
the brain ECS
The complexity of the diffusion phenomenon in brain ECS
is related with the dynamic brain response to changes in
external conditions. In the work of Pfeuffer et al. [25] the
brain extracellular tortuosity under different conditions was
investigated. A relationship between porosity and tortuosity
was used of the form:

T = 1/εn (8)

The authors found that the tortuosity exponent is variable
and depends on the brain tissue behaviour. In healthy neo-
natal rat brain, n = 0.31 in grey matter, whereas n = 0.46 in
white matter. The exponential index, n, decreases conti-
nuously upon induction of global ischaemia and reaches
an asymptotic value of around 0.24 (both in grey and
white matter) roughly 30 min after ischaemia. It must be
underlined that the exponential index for grey matter is
lower than in the case of a rigid particle bed packing [32],
where usually we have n = 0.4–0.5 [33].

In a recent work several attempts were made to obtain
a model for the dependence of T on ε, in particular using
Archie’s law [42]. On the basis of experimental data in rat
neocortex, the authors concluded that T was independent
of ε. However, it must be stressed that the Archie equation
was obtained many years ago for mineral porous media,
which are non-flexible arrangements where the parameter
n is constant for a defined porous medium.

The abovementioned data demonstrate the dynamic
behaviour of ECS as an interplay of the porosity and tor-
tuosity that is not observed for an inert rigid packing and
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Figure 2 Three-dimensional dependence of the tortuosity index on ε

and T

Spheres, three-dimensional data positions: grey spheres, normal ECS con-
ditions; black spheres, abnormal conditions. Small points are projection on
axial planes.

is completely different from the one assumed, for example,
with Archie’s model.

The above results show also that we must pay attention
to the dependence of the tortuosity T on ECS volume
fraction ε, as well as on the dependence of n on ε (eqn 8).
In order to generalize this dependence, we collected data
(120 sets) for tortuosity T measured from results on TMA+

diffusion and then we calculated the exponential index of
eqn (8). Experimental data were gathered from the above-
cited articles [14,25–29] as well as from the results
mentioned in the papers by Syková and colleagues [43–
47]. The small size of TMA+ allows us to assume that the
obtained tortuosity is in the range of the geometrical value
Tg (see Figures 2 and 3).

As may be seen from the graph (Figure 3), the main vari-
ation of index n versus porosity concentrates in the range
between n = 0.2 and n = 0.6 (broken lines). Furthermore,
most of the exponential index values stay between two bor-
der lines encompassing the vast majority of the experimental
points. The upper border line is given by the expression:

n = 0.26 + 0.3ε + ε2 (9)

and the lower border line is given by:

n = 0.2 + ε2 (10)

The upper border line defined by eqn (9) may be related to
‘topologically’ dense cell arrangement, whereas the lower
(eqn 10) is related to loose arrangement. Scattering of n
in the neighbourhood of ε = 0.3 is discussed below. Border

Figure 3 Dependence of n on porosity (ECS volume fraction) calculated
from the experimental data of TMA+ diffusion gathered from published
articles

Broken straight lines correspond to the main range of n, and broken curves
are boundary eqns (9) and (10). Continuous curves, eqns (11) and (12).
�, Data [43] for rat neocortex and subcortical white matter during postnatal
development and [45] for foetal grafts young and old (where curves 1 and 2
represent young and mature brain respectively). �, Experimental data gathered
from [14,25–29] as well as from the results of Syková and colleagues [42,46,47].
�, Osmotic changes in rat neocortex [42].

lines given by eqns (9) and (10) may both be obtained from
the equation:

n = n0 + aε + ε2

where n0 corresponds to extrapolation for ε = 0, and
a = 0.3. If we extrapolate eqns (9) and (10) for ε = 0, we
obtain as an average value n0 = 0.23. We then have the
corrected equations:

n = 0.23 + 0.3ε + ε2 (11)

n = 0.23 + ε2 (12)

which contracts slightly the region of the tortuosity index
variation, increasing the number of outliers. Nevertheless,
it presents the advantage of equalizing the boundary condi-
tions for ε = 0.

The model validity was checked with experimental data
on TMA+ ion diffusion in two different kinds of brain tissue,
rat cortex and turtle cerebellum, obtained from the work
of Rusakov and Kullmann [14]. We have two data sets of
different types: the one obtained from rat cortex is a topo-
logically loose cell arrangement, whereas turtle cerebellum
presents a dense arrangement. Original experimental data of
[14] together with the previously obtained modelling curves
are shown in Figure 4, where curves 1 and 2 represent
models in eqns (13) and (14). Thus, for a topologically dense
arrangement (turtle cerebellum), we have:

T = 1/ε0.23+0.3ε+ε2
(13)
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Figure 4 Dependence of tortuosity T on volume fraction ε of ECS

Data from [14] are shown: �, turtle cerebellum; �, rat cortex. Curves 1 and
2, eqn (13) and (14), respectively; curves 3 and 4, eqn (8) when n is defined
by eqns (9) and (10), respectively.

whereas, for a loose arrangement (rat cortex) we have:

T = 1/ε0.23+ε2
(14)

Curves 3 and 4 in Figure 4 correspond to eqn (8) when n is
defined by eqns (9) and (10) respectively.

As may be seen, boundary curves 3 and 4 enclose
the experimental data well. The proposed fitting functions
correlate with experimental data and provide a simple
and reasonable explanation for the observed variation in
tortuosity versus porosity.

Now we can go back to the data presented in Figure 3.
On the basis of the boundary limits for n = 0.2 and 0.6,
shown in Figure 3 as broken lines, it is possible to obtain
a probable range of the tortuosity variation drawn in
Figure 5. If we consider the tortuosity as T = (D0/De)1/2 an
important conclusion may be drawn: as compared with an
inert granular bed packing, where T = 1/ε1/2 (Figure 5, curve
7) [33], the tortuosity variation for ECS is less abrupt. This
means that, when the ECS fraction ε decreases, cellular
structure (presumably the cell membrane) rearranges the
void space in order to keep the diffusion within an acceptable
range. Therefore, this autocorrection phenomenon gives the
living tissue the ability to support diffusion at a level 2-fold
higher (or more) than in an inert granular bed packing.

Moreover, even with a drastic ECS decrease, the
cellular system is still able to maintain diffusivity between
certain bounds by decreasing tortuosity. To explain physically
the tortuosity jump at about ε = 0.3 (see Figures 3 and
5), further investigation will be needed. Nevertheless, on
the basis of experimental data available [2,10,25,44,46,48]
it is possible to speculate that the tortuosity jump might
be related to some pathological states (X-irradiation,
encephalomyelitis, etc.).

Figure 5 Range of ECS tortuosity, determined from diffusion data of TMA+ ,
for different void fractions of the brain ECS (light shaded area)

Curves 1 and 2, functions (13) and (14); curves 3 and 4, eqn (8) when n defined
by eqns (9) and (10); curves 5 and 6, lower T = 1/ε0.2 and upper T = 1/ε0.6

levels; curve 7, conventional dependence of the tortuosity for granular bed
T = 1/ε0.5 .

Figure 6 Representation of normal and abnormal brain tissue distribution

n versus ε: 1, anoxia; 2, blood pressure 30 mmHg; 3, blood pressure 40 mmHg;
4, 10 min after death; 5, X-irradiation acute state; 6, X-irradiation chronic state;
7, hypoxia; 8, terminal apoxia; 9, recovery after anoxia; 10, hypernatermia; 11,
astrogliosis-stab wounds; 12, experimental autoimmune encephalomyelitis; 13,
implication of 50 mM K+ ; 14, ischaemia; 15, 80 mM K+ ; 16, cortical grafts.

We investigated this issue with the help of cluster
analysis. Clustering is normally used to classify observations
into groups whenever these groups are not yet identified.
The obtained results show that the data set can be di-
vided into three clusters, separating data corresponding to
normal brain behaviour from two clusters correspond-
ing to abnormal brain behaviour (Figure 6). Normal and
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abnormal brain conditions defined in terms of n versus ε are
shown in Figure 6.

During maturation ECS brain volume changes signi-
ficantly. According to [2], neonatal rat brain has ε between
0.36 and 0.46 and T ≈ 1.5, whereas the healthy brain of an
adult rat has ε between 0.19 and 0.22 and T ≈ 1.6. In the case
of ischaemia the porosity decreases to ε = 0.05 +− 0.021, and
tortuosity increases to T ≈ 2.00 [10]. No further changes
in ε were found during and up to 120 min after the animal’s
death, but tortuosity increased significantly to T = 2.20 +−
0.14. Post-mortem brain is no longer able to control the
diffusion process.

The transition from neonates to mature brain corres-
ponds to a significant change in ε and crosses the region of
the tortuosity jump but, as pointed out in [2], the tortuosity
variation in a healthy brain is not statistically significant at
any age. Tortuosity in this case falls between curves 1 and
2 (Figure 5). However, young brain tortuosity is closer to
the upper borderline (Figure 5, curve 1), whereas aged brain
tortuosity tends to be closer to the lower borderline (Fig-
ure 5, curve 2) [3,46]. The observed changes in ECS diffusion
parameters during aging may contribute to functional deficits
and memory loss [3].

Index n may be useful for the characterization of the
anomalous brain tissue. As an example we shall consider a
neural tissue formation within porous hydrogels implanted in
brain and spinal cord lesions [47]. This issue was investigated
as a potential method to repair tissue defects in the
central nervous system by replacing lost tissue and by
promoting the formation of a histotypic tissue matrix that
could facilitate and support regenerative axonal growth.
The following values were obtained for implanted and non-
implanted hydrogels: implanted hydrogels, porosity ε ≈ 0.49
and tortuosity T ≈ 2.17 corresponding to n = 1.09; non-
implanted hydrogels, ε ≈ 0.8 and T ≈ 1.13 corresponding to
n = 0.5. As we may see in Figure 6, in any case the index n is
rather distant from any of the previously identified clusters.

According to Figure 3, for ε around 0.49 the expected
index n must be in the range of 0.5–0.6. Moreover, at
ε = 0.49 the tissue tortuosity is close to the inert granular
packing tortuosity (Figure 5). The tortuosity generated by
cells presence may be estimated as Tc = 1/ε1/2 = 1.43. The
experimental values obtained for tortuosity, 2.17 and 1.13,
mean that gel matrix, and not growing tissue, is mainly
responsible for the overall tortuosity, since these results
match those obtained for diffusion in gel-matrix-type porous
media [33].

Let us use another example. Research of Syková et al.
[45] was devoted to measuring ECS diffusion parameters
in host cortex, host corpus callosum, fetal cortical tissue
transplanted into host midbrain (81–135-day-old ‘young’ C-
grafts and 336–351-day-old ‘old’ C-grafts), foetal tectal tissue
transplanted into host midbrain (105–150-day-old T-grafts)

and fetal cortical tissue transplanted to host cortex (209–
245-day-old C-C-grafts). Calculated indexes are shown in
Figure 3. For young grafts, indexes are on the top of the
‘jump’ region (marked as 1) that points out to abnormal
tissue behaviour. For old grafts the indexes (marked as 2) lie
in the region corresponding to normal brain behaviour and
are an evidence of the observed well-incorporated grafts.

The main advantage of the use of the tortuosity index is
that it may be easily adopted for recalculation of tortuosity
or porosity if one of these parameters is already known. By
rearranging eqn (8) we have Tεn = 1 and

ln T + n ln ε = 0 or n = − ln T /ln ε (15)

Tortuosity and porosity representation in the logarithmic
form (eqn 15) may be a promising tool for further
implementation of an approach based on the theory of
information [49]. Live tissue reacts differently under different
environmental conditions [50]. In some pathophysiological
states, ε and T behave as independent variables. A persistent
increase in T (without a decrease in ε) is always found
during astrogliosis and in myelinated tissue, suggesting that
glial cells can act as diffusion barriers, making the nervous
tissue less permeable and thereby playing an important
role in signal transmission, in tissue regeneration and in
pathological states [17,18]. These changes are important
in understanding some diseases [3]. In particular, during
aging, the movement of substances is retarded in the
narrower clefts. This is partly compensated for by a
decrease in the diffusion barriers that may be formed by
macromolecules of the extracellular matrix. Hence, diffusion
in ECS must be considered together with macromolecules
of the extracellular matrix for explanation of the diffusion
phenomenon diversity [4,14,16,51]. It is why we shall analyse
now what happens with the diffusion of macromolecules.

Discussion: the diversity of diffusion
mechanisms in brain

As we have seen, diffusion in ECS may significantly change
according to brain condition, thereby giving rise to different
diffusion parameter values. Furthermore, diffusion will also
depend on the molecular mass, on the concentration and
on the shape of the macromolecule. The polymer concen-
tration increase in regions with diffusion stagnation may
totally exclude from these regions some of the diffusing
molecules and therefore decrease the pathway tortuosity.
On the other hand, increasing the average polymer concen-
tration will increase, as we have seen above, hindered
diffusion.

The effect of large molecules in sufficient concentration
on diffusion of TMA+ in ECS is illustrated in [17]. Superfusion
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through a slice of spinal cord with a solution containing
either 40 or 70 kDa dextran (concentration in solution 1
or 2 %) or 0.1 % hyaluronic acid (1600 kDa) results in a signi-
ficant increase in tortuosity; T = 1.72–1.77 for dextran and
T = 2 for hyaluronic acid, whereas in standard physiological
solution T = 1.57. Variation of ECS ε was limited to about
10 %.

An example of tortuosity reduction by increasing
stagnant diffusion regions with the consequent ‘smoothing’
pathway tortuosity is seen in the work of Hrabetova and
Nicholson [52], where the effect of dextran on the diffusion
in a thick-slice ischaemia model was studied. This study
shows that the tortuosity in thick slices from rat neocortex
may increase or decrease depending on experimental
conditions, whereas ECS volume fraction remains constant
and reduced to ε = 0.1. Using TMA+ diffusion, the authors
found that, for ischaemia, tortuosity rose from a value of 1.66
to 1.99 in thick slices as expected. However, the tortuosity
dropped to 1.54 when 70 kDa dextran was added to the
bathing medium. This apparent contradictory effect might be
explained by the excessively low porosity of the ischaemic
tissue, which might have been increased by a swelling effect
due to the presence of dextran.

The effect of the macromolecule shape on diffusion
is illustrated in the work of Zoli et al. [19]. The authors
reported that even polymers with a molecular mass of about
1000 kDa can diffuse in the ECS as long as they have an
appropriate elongated shape.

The diffusion properties of two types of large co-
polymer of HPMA [N-(2-hydroxypropyl)methacrylamide],
developed as water-soluble anti-cancer drug carriers, was
discussed by Syková et al. [17]. In a study carried out in
rat cortical slices the authors used linear HPMA polymeric
chains of 1000 kDa and star-like systems, containing either
albumin (179 kDa) or IgG (319 kDa) in the centre with
HPMA side branches. Long-chain HPMA polymers diffuse
through the ECS with the same tortuosity as small molecules
such as TMA+. However, when the HPMA is shaped into a
more bulky globular molecule with the help of a graft co-
polymer the tortuosity increases to about 2.3. Tortuosity
for long-chain HPMA was always found to be smaller than
tortuosity of globular co-polymers. These data show that the
shape of the substance is a limiting factor in its movement
through the ECS. In a further research, Prokopova-Kubinová
et al. [53] conjugated HPMA with BSA to obtain a bulky
polymer of 176 kDa molecular mass. As a consequence, the
tortuosity rose to 2.27, a value similar to the one previously
obtained with BSA alone and with 70 kDa dextran. The
reason for the observed differences may be explained by
the changes in molecular shape.

Graphical representation of the tortuosity versus
molecular mass taken from the aforementioned articles
is shown in Figure 7. As may be seen, one of the main

Figure 7 Tortuosity versus molecular mass (MW) as defined in ECS
diffusion experiments

Curve 1, tortuosity trend for pure molecules and star-like systems; curve 2,
linear HPMA co-polymers tortuosity trend. PHPMA, poly[N-(2-hydroxy-
propyl)methacrylamide] [53].

characteristics affecting diffusion in ECS is supposed to be
the macromolecule’s shape rather than the molecular mass.

Relatively rigid globular particles such as the proteins
presented in Figure 7 withstand hindered diffusion and
therefore show higher total tortuosity if the tortuosity is
calculated as T = (D0/De)1/2.

Dextran and other polysaccharides contain a backbone
of D-glucose units [54] and are characterized by a relatively
open-chain (randomly coiled) molecular structure [55]. For
a linear, random-coil polymer, Deen [31] suggested the use
in the hindered diffusion equation of a radius ≈ 0.7aE. Also,
Nugent and Jain [35] reported that, in membrane pores,
linear dextran has a diffusion radius around one-third to
one-half of its aE. Therefore a lower tortuosity T = (D0/De)1/2

should be expected. However, the elongated shape of the
dextran molecules gives them a behaviour similar to that
observed for globular proteins.

Tortuosity for BSA co-polymer with a star-like struc-
ture is close to globular proteins, owing to similar molecular
mass and shape.

The molecular size of HPMA was not defined in [17,53],
but it is possible to estimate it by using the information
available on polyacrylamide. Polyacrylamide exhibits a
flexible spherical shape between 15 and 30 ◦C [56,57]. For
the solutions of polyacrylamide the relaxation time is about
0.8–1.16 ms, but the molecular size is significantly higher
than dextran (for dextran of 70 kDa, aE = 11 nm [58]):
320 kDa, size 40 nm; 920 kDa, size 98 nm and 2900 kDa,
size 206 nm [59]. If molecular exclusion and a pathway-
‘smoothing’ effect are taken into account then these macro-
molecules will be able to diffuse in a limited volume of
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ECS through the large size. This means that parts of the
intercellular structures may act as molecular sieves. This
speculation seems important, as the type of macromolecules
mentioned are considered as water-soluble anti-cancer drug
carriers. As a tumour has a larger ECS volume than normal
brain tissue, macromolecules of the appropriate size would
be able to penetrate only into the tumour tissue, thereby
avoiding negative chemotherapeutic effects on normal brain
cells.

In conclusion, we may say that, with the help of the ap-
proach proposed in the present study, it is possible in the
first place to characterize ε and T for a defined pathological
case. Each pathological state may be characterized by a
specific set of parameters, and the tortuosity index, n,
introduced in the form of a logarithmic ratio between T
and ε, is correlated with several pathological situations. We
found that upon different external conditions, for instance,
oxygen depletion, the ECS porosity decreases and cells
(presumably through membrane rearrangements) adjust the
void space to keep the diffusion within a defined range, which
gives the living tissue the ability to support diffusivity up to 2-
fold or more times the values found in conventional granular
bed packing. Thus even with a dramatic ECS decrease, the
cellular system is still able to sustain a given diffusion by
reducing T.

Our research showed also that the hindered diffusion
model is the most suitable for the description of macromole-
cular diffusion in brain ECS. The hindered diffusion is
affected by three factors: molecular mass, concentration and
molecule shape of the diffusing macromolecule.

The present approach allows us to define the mech-
anisms that affect macromolecular motion in ECS and
thereby enables us to select the best-fitted transport macro-
molecule for drug delivery or to elaborate a suitable strategy
to combat brain diseases. This might be important in brain
clinical treatment.

Finally, obtained results show that living tissues have
the unique possibility of controlling mass-transfer processes
by adjusting ECS configuration by porosity and tortuosity
that can be described by a three-parametric model. This
situation does not occur in inert materials, for which the
dependence of the porosity on tortuosity may be defined
by two parameters. The developed three-parametric model
enabled us to define a domain where the vast majority of
the experimental points are enclosed.
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19 Zoli, M., Jansson, A., Syková, E., Agnati, L. F. and Fuxe, K. (1999)
Trends. Pharmacol. Sci. 20, 142–150

20 Prokopova, S., Vargova, L. and Syková, E. (1997) Neuroreport
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45 Syková, E., Roitbak, T., Mazel, T., Simonová, Z. and Harvey,
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