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Abstract: The complexity of processes involved in the formation of granular beds results in 

limited information about permeability k , which directly rela tes with packing porosity ε  and 

tortuosity T . For a mixed bed of particles significantly different in size, the influence of 

packing affects permeability. For a better understanding of the underlying relationship  

between k , ε , and T  in mixed beds of particles significantly different in size, simplified 

porous media model of binary mixture of spheres were used.  Boundary analysis of the binary 

packing showed that the approach based on the fractional porosity of large and small size 

particle fractions gives a tool for ε  control. This approach allows a new insight into the 

mixture structure and provides explanation for the different types of the obtained porosity. 

Binary packing of glass beads with size ratios 13.3, 20, and 26.7 were investigated. As a 

basic relation for the dependence of T  on ε , at different volume fraction Dx  of large 

particles in the mixture, the formula nT ε/1=  was used. The obtained experimental results 

show that the parameter n  is a function of the packing content Dx  and may vary in the range 

of 0.4 – 0.5. The reason for n  variation was explained by the wall effect of the small particles 

arrangement occurring near the large particles surface. A model accounting for this effect is 

proposed and may be useful for transport phenomena analysis in granular bed filters. 
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1. Introduction 

 

Models of behavior binary particle beds porosity vs. the volume fraction on of the mixture 

components were described in many publications [1-9]. Nevertheless, models of fluid flow or 

mass transfer in porous media need to establish relationships of packed bed porosity with 

tortuosity, permeability or diffusivity [10]. For a mixed bed of particles significantly different 

in size taking into account the influence of the porosity on the permeability through such 

characteristic as tortuosity becomes important [11]. 

 Particularly, in solid-liquid separation the knowledge of solids packing structure is 

important to control permeability and dewaterability. For instance, cakesare  formed in 

filtration often represented by the composition in coarse and fine particles. Similar 

composition is also observed in filter and catalyst beds. 

 To clarify the relationship between packing porosity, tortuosity, and permeability, binary 

mixtures of spheres of different size are investigated and analysed in the current work.  

 

2. Background 

 

 The permeability k  of filter bed is usually cha racterised by measuring the flow velocity at 

fixed pressure drop in laminar regime, )/( Lpku µ∆⋅= , where k  is the permeability, p∆  is 

the pressure drop, L  is the bed thickness; µ  is the liquid viscosity. The permeability itself is 

a complex function of some variables: ε , avd , T  
 

})1(36/{ 22
0

32 εε −= TKdk av                      (1) 

 

where avd  is the average particle size in the bed and for binary mixture of large particles of 

size D  and small of d  is 1}/)1(/{ −−+= dxDxd DDav ; Dx  is the volume fraction of large 

particles in the bed; complex KTK =2
0  is the Kozeny’s coefficient and for granular beds 
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0.52.4 ÷=K ; T  is the tortuosity; 0K  is the shape factor depending on a capillary pore cross-

section area shape: for spheres packing 0K  = 2.0. 

 The tortuosity is defined as LLT e /= , where eL  is the average flow pathway length and 

L  − the bed thickness. In general, the tortuosity depends on the mixture content and, 

respectively, on the overall porosity ε : )( Dxεε =  and )(εTT =  [10]. 

 

2.1. Porosity 

 

 Below we will use a model of the binary mixture developed [10]  in previous research  

[10,12-14]. This model makes possible to analyse the influence of each particle fraction on 

the overall porosity in all range of Dx  by means of a fractional porosity approach.  

 Let us represent the overall porosity ε  as a function of fractional porosity )( DDD xεε =  

and )( Ddd xεε = , where Dε  is the void fraction of large particles in the total volume of the 

mixture, and dε  is the specific void fraction of small particles in the remaining void volume 

of the mixture. Since the overall volume of solids in the mixture, ε−1 , is a sum of volumes 

of large particles, Dε−1 , and small particles, Dd εε ⋅− )1( , the porosity of the mixture 

becomes, [14] , 

 

dD εεε ⋅=                           (2) 

 

 Example of dε  and Dε  together with ε  for moderate particle size ratio are shown in 

Figure 1a, curves 1, 2, and 3, respectively. Dependences were built based on mode l obtained 

[10] for ~/ dD  10. 
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        (a)                 (b) 

Figure 1. Representation of the binary mixture porosity )( Dxε  by fractional porosities 

)( DD xε  and )( dd xε . (a) – Sketch of ε  (3 and 3´) and fractional porosities 1,2 and 1´, 2́ 

drawing for moderate particle size ratio ~/ Dd=δ  0.1 (curves 1 – 3) and Dd /  = 1.0 (curves 

1´- 3´). (b) – Sketch of fractional porosities drawing for particle size ratio →Dd /  0 (curves 

1´´ and 2´´ and horizontal line ). Points correspond to experimental data for a Dd /  range 

0.0375 – 0.513 obtained in [10]  and in the present work. Open and solid symbols correspond 

to Dε  and dε , respectively. 

 

 At limit Dd /  = 1.0, fractional porosities dε  and Dε  represent curves 1´and 2´ and ε  

corresponds to line 3´ in Figure 1a. At the other extreme →Dd /  0, in idealized case, Dε  and 

dε  are characterised by two parts: curve 1´´ and 2´´, respectively, and segment of horizontal 

line, Figure 1b, if we assume that 00
Dd εε = . Here 0

dε  and 0
Dε  are the porosity of the bed of 

pure small and large size particles , respectively. 

 For the limit →Dd /  0 when 0
DD εε =  and 0

dd εε =  the model (2) takes the form of 

equations (3) – (5) [10], which is a case of a conventional boundary limit of the binary 

mixture with significantly different particles size [1,2,7,15] . 
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with minimum porosity 00
DdMin εεε ⋅=  at 

 

)1/()1( 000
min DdDDx εεε −−=                      (5) 

 

 The influence of small and large particles arrangement on the shape of the overall porosity 

dependence was discussed in the work [16] , where it was shown that continuity or 

discontinuity of Dε  and dε  dependences are the result of packing effects in the region of 

minDx . These effects are caused by small particles wedging between large particles in the 

skeleton and by disturbance nearby the surface of large particles. 

 

2.2. Tortuosity 

 

 Tortuosity is associated with the flow and mass transfer characteristics such as 

permeability, diffusivity, effectiveness, etc. [17-27]. 

 The tortuosity investigations have concentrated on the establishment of a relationship 

between the overall porosity and tortuosity, T , [28]. For granular packing the main effort has 

been devoted to determine some fixed tortuosity value, [9,29-31]. Limited information is 

available on the overall tortuosity performance in the region of minimum porosity. 

 Theoretical and practical investigations show that the tortuosity of a granular bed depends 

on fractional content, porosity, and on particle shape. Tortuosity increases with decrease of 

the ratio Dd /=δ . Therefore the value of T  may vary in a wide range [10,12-14,32]. 

 Among a variety of proposed dependences T  vs. ε  a simple relation is often used 

 
n

DxT )}(/{1 ε=                          (6) 

 

where n  is a constant usually between 0.4 and 0.5.  
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 There is evidence in living tissue that the dependence of the tortuosity does not follow 

equa tion (6) with constant value of n . Moreover, it was observed a dependence of n  on ε  

[33]. The above-mentioned observation requires experimental verification, due to its 

importance as a correction factor, in the Kozeny – Carman model, of the packing bed 

permeability and usefulness for further transport phenomena analysis in granular beds. 

Moreover, experiments and theoretical analysis show that the tortuosity variation in granular 

beds is limited by fractional porosities values. Theoretically, if the dependence (6) is used, 

the maximum binary mixture tortuosity corresponds  to n
dD

nT )/(1/1 εεε ==  [14,34]. 

Because the tortuosity increases when the porosity decreases, our attention would be focused 

on packing with small particle size ratio, i.e. ≤δ  0.1. 

 

2.3. Permeability 

 

 The porosity has a significant effect on the permeability. As an example the permeability 

of the binary glass beads packing ( dD/  = 10.22) is show in Figure 2a. 

 

   

         (a)                (b) 

Figure 2. Permeability k  dependence on Dx . (a) – Experimental (points) and modelled 

(curve) permeability k  from [10] , dD /  = 10.22, 00
dD εε =  = 0.4, and 4.0)}(/{1 DxT ε= . (b) –  

Simulated k  by the model [10] for different dD / . Large particles size is fixed and assumed 

to be D  = 3.45·10-3 m. 
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 Simulation of k  vs. Dx  for a fixed D  confirms that the ratio δ  affects the permeability 

whenever we change the size d , Figure 2b. The depth of the minimum region of the k  

profile increases as d  decreases and is re-located in t he range of Dx  ~ 0.2 - 0.7 to Dx  ~ 0.3 - 

0.6. 

 It is possible to show that in different packing conditions the monosized packing porosities 

0
Dε  and 0

dε  significantly affect the permeability profile, Figure 3. Simulation was done using 

the model presented in [10] for a packing of dD /  = 10.22 (D  = 3.45·10-3 m).  The dashed 

curve in Figure 3 represent s the conventional case of 00
dD εε =  = 0.4. 

 

   

         (a)                (b) 

 

Figure 3. Dependence of the permeability k  on Dx  and monosized packing porosities for 

dD /  = 10.22: (a) 0
Dε  = var. (b) 0

dε  = var. The dashed curve belongs to a conventional case of 

00
dD εε =  = 0.4. 

 

 As we can see, the permeability is very sensitive to the porosity and particles size; even 

with exactly the same fractional porosity, the permeability may be changed by more than one 

order of magnitude. 
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3. Materials and Experimental Procedure s 

 

 The particle composition [35] and the packing method affect the properties of mixed beds 

[10]. D ifferent packing methods imposed different packing constraints, which in turn affected 

the degree of randomness of packing [36] . Therefore many researchers devoted a lot of effort 

to develop packing methods that could give rise to reproducible packing beds [9,31,37-39]. 

This fact was the reason for developing a column packing procedure of binary glass beads 

mixture that give consistent results.  

 Binary mixtures of glass beads were used in all experiments included in the present work: 

Beads of large size were obtained from Simax. The other glass beads came from Sigmund 

Lindner. Particles density was 2500 kg/m3 in every case. 

 

3.1. Testing mixing and packing procedure  

 

 In order to eliminate segregation effect of particles significantly different in size during 

mixing and packing a viscous  water solution of glycerol was used. Application of glycerol for 

particles adhesion on the later stage of mixture packing gives the possibility of removing 

adhesive from a column with a minimum cost, simply by washing with water. Preliminary 

experiments show that the optimal solution for mixing is the 90% solution of glycerol in 

water. 

 The procedure includes mixing the glass beads in the appropriate proportion with a 

glycerol aqueous solution, filling the column, packing the column, washing the glycerol out, 

followed by a check-up by means of image analysis particle fractions distribution in the 

column. 

 To check homogeneity and reproducibility of the method a square column (5 cm inner side 

and 40 cm high) was used in the experiments. To provide better image analysis of particles 

distribution glass spheres of different size were marked with waterproof inks of different 

colours.   

 A certain mass proportion of dyed spheres were put in a mixer, Figure 4a. A solution of 

90% glycerol in water was then added to the spheres in a 15% mass proportion. Spheres and 
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glycerol solution were mixed at 75 rpm during 5 minutes inside the vessel. Finally, the sticky 

mixture with sufficient adhesion between spheres was obtained.  

 

       
           (a)               (b) 

 

Figure 4. Equipment used for tasting mixing procedure. (a) Mixer. (b) View of the square 

column with a binary packing. 

 

 The mixture was the transferred to a prismatic vessel and glycerol was washed out, Figure 

4b. Mixtures with particle size ratio dD /  = 13.3, 20, and 26.7 were tested covering the range 

of Dx  from zero to 1.0. Digital pictures taken from each face were automatically treated by 

image analysis to determine the coloured fraction present in each face , Figure 5a. 
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        (a)                (b) 

 

Figure 5. Example of image treatment of a binary packing. The mixture contains 30% of 

3mm spheres (black) and 70 % of 0.875 mm spheres (grey). (a) Picture taken from one of the 

column sides. (b) T reated image  of the picture (a).  

 

 The homogeneity of particles distribution was checked by comparing the large size 

particle fraction area displayed in the images with the fraction Dx  of the particles presented in 

the mixture poured to the column. Statistical analysis showed that no significant deviation 

existed in the colour distribution of each of the four faces. A chi-square test showed that a 

uniform distribution could be accepted for the beads at the 1% significance level, no 

segregation of bead size nearby the edges was observed and that no column wall effect was 

present. The two-dimensional picture obtained by image analysis was converted to the 

corresponding 3-dimensional distribution, from which the expected bed porosity was 

inferred.  

 The estimated porosity was compared with the experimental value determined by 

gravimetry. Hundreds of experiments performed with this method showed the high 

reproducibility of the method. The standard deviation obtained for each face varied between 

0.12% and 1.42%. The mean standard deviation obtained was 0.89%. Therefore, we may say 

that the results obtained are reproducible and that no significant variation occurs in the 

captured image distributions of the four faces. More information about the method is given in 

a previous work [40]. 
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3.2. Porosity and permeability measurements 

 

 For the binary packing of particles of different size, the experimental method for 

measurement of porosity ε  and permeability k  as well as a data treatment procedures are 

described in [10,13,32,40] . 

 Binary beds with particle of size ratio dD /  = 13.3, 20, and 26.7 were object of the 

investigation. 

 The permeability was calculated by measuring flow velocity at a fixed pressure drop in 

laminar regime. Using experimental porosity and average particle diameter in the mixture 

avd , the tortuosity may be calculated from the formula (1). 

 

   
         (a)               (b) 

 

Figure 6 . Packing in the region of minimum porosity (a) and packing enriched of large size 

particles (b). (a) - Mixture with 70% of 4 mm (black), 30% of 0.375 mm (gray) spheres. (b) –  

Mixture contains 75 % of 4 mm spheres (black) and 25% of  0.375 mm spheres (grey). The 

packing staying below the segregation zone corresponds to the complete packing at the 

minimum porosity region. 
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 This investigation was mainly concentrated on packings with Dx  up to the region of 

minimum porosity, because after that a complete packing, Figure 6a, transforms 

spontaneously in a segregated packing, Figure 6b. 

 

4. Results and Discussion 

 

4.1. Porosity 

 

 For binary mixtures with particle of size ratio dD /  = 13.3, 20, and 26.7, in the context of 

the fractional porosity, all values of dε  and Dε  are encompassed by the corresponding 

regions defined by the model displayed in Figure 1b. With decreasing δ , fractional porosities 

(represented by triangles) behave similarly to the linear model, equations (2) –  (5), but in the 

range of minimum porosity they are still quite far from the model prediction. 

 Experimental data in Figure 7a show  two types of porosity behaviors: at ≥δ  0.1 a smooth 

transition in the region of minimum porosity is observed, whereas for lower δ  the porosity 

performs more likely as predicted by equations (2) – (5), Figure 7a, curve 3. The above-

mentioned segregation effects (may be the reason why the smooth transition observed in the 

region of minimum porosity changes to a sharper transition when δ  becomes smaller than 

0.1. It seen, also, that the previous model has limitations in the range of dD /  > 10 [10], 

curves 1 and 2. 
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        (a)                 (b) 

 

Figure 7. Measured (points) and simulated (curves) porosity at different particle size ratio. 

(a). Curves 1 ( dD /  = 10.22) and 2 ( dD /  = 13.3) –  Model [10]; 3 – Equations (2) – (5) at 

→δ  0, for measured 0
dε  = 0.371 and 0

Dε  = 0.4. (b). Comparison of the experimental porosity 

with the model (8). 1 – 5 Model (8) for dD /  = 5.32, 10.22, 13.3, 20, and 26.7, respectively. 

6 – Equation (7). 

 

 Nevertheless, for δ  < 0.1 we tried to us the approach similar to [10], i.e. to apply a 

correction function. As mentioned above, practical interest represents complete packings in 

the region minDD xx ≤ . In this case, the system (2) –  (5) transforms to the equation 

 

)1/()1( 00
dDDd xx εεε −−= ,  [ ]min ,0 DD xx ∈                (7) 

 

A correction function )(δϕ  was searched in the form of )(δϕεε ⋅= , where ε  is defined by 

equation (7). The best result was obtained for a correction function of the form 

)2264.1exp()2264.1exp()( //1 dD
DD xx == δδϕ , hence, equation (7) has the following form 

 

)1/()2264.1exp()1( 0/10
DdDDd xxx εεε δ −−=                (8) 

 

that is valid for minDD xx ≤ . 

 Function (8) gives good results, Figure 7b, up to the composition with minimum porosity. 

When the δ  value approaches zero →)(δϕ  1.0, the model gives rise to the “ideal” curve 

given by equation (7) . The validity of this correction function can be accepted for ≤δ  0.1. 

 Minimum Porosity. The minimum porosity, εmin , depends on the particles size ratio 

D d/ . The porosity ε min  decreases when the size ratio increases and converges to the 

absolute minimal value, Minε , for D d/ → ∞  [14,41]. When D d/ → ∞  ( →δ  0) the 



 

14 

displacement or distortion effects of each particle fraction on fractional porosities become 

insignificant. Hence, the absolute minimal porosity is defined by the relation 00
dDMin εεε ⋅= . 

 In reality, the minimum porosity is Minεε ≥min . By substituting (8) in (7) we have 

 

)1/()2264.1exp()1( min
0/1

minmin
0

min DdDDd xxx εεε δ −−=              (9) 

 

 Experimental values of the minimum porosity obtained in our work (solid circles 1) are 

shown in Figure 8 together with equation (9)  calculated for measured 0
dε  = 0.371 and 0

Dε  = 

0.4, curve 1. As can be seen, the function (9) underestimates the minimum poros ity of the 

experimental data. This fact leads to the conclusion that even at δ  = 0.037 the measured 

fractional porosity (Figure 1b) is quite far from the case of →δ  0, equations (3) and (4). 

 In the context of the dense and loose packings it is useful to analyze the dependence of 

minε  on δ  taken from several literature sources. Figure 9 represents a data collection 

containing current research data (points 1) as well as data gathered from different researchers. 

 

 
 

Figure 8 . Dependence the spheres binary packing minimum porosity minε  on the particle size 

ratio δ . Experimenta l data: 1 –  Current work; 2 – Data [10]; 3 –  Data [41]; 4 –  Data [42]; 5 –  
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Data [2]; 6 – Data [7]; 7 – Data [9]; 8 –  Data [43]; 9 –  Data [44] ; 10 – Data [45]. Curves: 1 –  

Equation (9); 2 – Corrected function (9) with a  = 1.045, 3 – Boltzmann fit; 4 and 5 – 

Relation from [41]  for Minε  = 0.16, 0
dε  = 0.375 and Minε  = 0.1484, 0

dε  = 0.375, and 

exponential coefficient 0.085, respectively. 

 

 We can see that experimental data scatter between dense packing represented by the data 

points 3 (McGeary quoted from [41] ), loose packing (points 2) and current experimental data 

(points 1). 

 In Figure 9, relation from [41] for Minε  = 0.16 and 0
dε  = 0.375 is shown as curve 4. An 

attempt to adopt this relation for a loose packing (curve 5), leads to replace an exponential 

coefficient 0.25 with 0.085 but in comparison with Boltzmann fit it gives a worse fitting with 

experimental data at δ  ~ 1 and δ  << 1.0. Therefore, our choice was favorable to the 

Boltzmann fit .  

 Experimental data in Figure 8 clearly differentiate zones for δ  related with specific 

packing mechanisms. One of the possible effects on the packing is the so-called wall effect. 

The large size particles are “viewed” by the small ones as a “wall”. If we assume that the 

main effect on minε  is related with the fractional porosity of small particles, which in this case 

is larger than 0
dε  then we can improve equation (9)  by introducing a correction coefficient 

≥a  1 in the form 00
ddc a εε ⋅= . For a  = 1.045 ( 0

dε  = 0.371), Figure 8, curve 2, equation (9) fits 

well to experimental data obtained in the current work. 

 Usually the disturbance or “wall” effect propagates to a distance of 4 – 5 diameters from 

the wall and may serve as an explanation for the observed dependence of ε  on Dd /=δ .  

Moreover, according to Figure 8, Minεε <min  and if we want to have an almost completely 

undisturbed porous medium, the small particles will have to be about 140 times smaller than 

the big particles. In turn, for δ  > 0.07, the wall effect occurs in the whole pore void. 

 Finally, four regions on the dependence of minε  vs. δ  can be identified: 1). A region of δ  

> 0.41 where a displacement mechanism acts upon particles (Figure 8, arrow A); 2). An 

intermediate region where a linear –  mixing model is observed, for δ  = 0.2 (Figure 8, arrow 
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B); 3). A region of partially disturbed arrangement of small particles in the void of the 

skeleton, 0.007 < δ  < 0.2 (Figure 9, arrow C); 4). A region of small particles arrangement 

close to the monosize packing, δ  < 0.007, Minεε ≈min . In this case, the small particles can 

invade totally the internal void space of the large particles. 

 

4.2 Tortuosity and porosity 

 

 The tortuosity in binary packing of particles with assumption of the relation (6) is 

 

nn
DdT εεε /1)/(1 ==                        (10) 

 

and we must expect that according to the above discussed distortion effect the maximum 

tortuosity maxT  is equal to  

 

nT minmax /1 ε=                           (11a) 

 

or, in the case of <<δ  1.0 

 
n
MinMaxTT ε/1max =≈                        (11b) 

 

 It must be admitted that the maximum tortuosity is usually observed in the region of 

minimum porosity.  In Figure 9 are shown dependences of the porosity and tortuosity on Dx  

for three different types of binary mixtures: (a) –  mixtures obtained in two-dimensional (2-D) 

simulation [12,46]; (b) –  mixtures of glass beads; (c) – mixtures of glass beads with different 

types of kieselguhrs [13].   
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     (a)          (b)          (c) 

 

Figure 9. Dependences of ε  and tortuosity on Dx . (a). Normalised 2-D porosity ε ε/ 0  and 

tortuosity T T/ 0 .  (b). Mixtures of glass beads : ε  and T T/ 0 . (c). Mixtures of glass beads + 

kieselguhr (size ratio bead/particle 30 – 35) : ε  and T . Values 0ε  and 0T  correspond to the 

porosity and tortuosity of monosized packing.  

 

 The region of  minimum porosity is characterised by a transition of pore size distribution 

from bimodal to unimodal [47]. Frequency distribution of different pore fractions obtained in 

2-D binary mixture model are shown in Figure 10. The following pore fractions were 

considered: a). Pore of a throat size in the point of contact two small particles d , fraction 1, 

or large particles D , fraction 4, respectively; b). Pore of the throat size in the point of contact 

small, d , and large particle, D , fraction 2; c). Two other fractions include pores with size: 

(fraction 2)  < Size < (fraction 4) = fraction 3, and Size > (fraction 4), fraction 5. 

 

   (a)           (b)          (c) 

 



 

18 

Figure 10. Histograms of a pore fraction distribution in 2-D binary mixture vs. Dx : (a) – 

Mixture with disk size ratio D d/ .= 191; (b) –  Mixture with D d/ .= 3875; (c) – Mixture 

with D d/ .= 1575 . Type of pore fractions (see the text). 

  

 The maximum tortuosity location in 2-D model correlate s with the above-mentioned 

transition zone. With increasing of dD /  the transition zone between bi- and uni-modal 

distributions moves toward larger value s of Dx .  

 Before the discussion of new experimental data the following conclusions may be drawn. 

1). The tortuosity of the binary mixed bed depends on the volume fraction of large particles 

Dx . 2). The  tortuosity has limited change  with increasing dD / , even for dD /  = 10.22, T  

increases up to 20% of monosized bed packing of spherical particles, only, but tacking in 

account that 2/1 Tk ∝  the miscalculation of the permeability with constT =  in the region of 

minimum porosity packing can be significant. 

 

4.3. Permeability 

 

 In Figure 11a experimental data for k  (size ratios dD /  = 13.3, 20, and 26.7) are shown 

together with the permeability simulation (equations 1 and 6)  using the porosity model (8) 

and assuming in (6)  that n  = 0.4 (dashed curves) or 0.5 (solid curves). The experimental data 

appears in between the simulation results. For Dx  < 0.3, experimental and simulated values 

are closer for n  = 0.5, whereas for Dx  > 0.5 the model fits better the data with n  = 0.4. 
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        (a)                 (b) 

 

Figure 11. Experimental and simulation results of )( Dxk  for  binary packing of dD /  = 13.3, 

20, and 26.7. (a) – Model including equations (1), (6) and (8) with n  = 0.4 and 0.5. The limit 

corresponds to →δ  0. (b) –  Experimental and simulated permeability k  vs. Dx  when the 

parameter n  in equation (6) is the function (14). Limits correspond to →δ  0 for n  = 0.5 

(dashed curve) and n  given by function (14). 

 

 Discrepancy between predicted and measured tortuosity shows that the real average flow 

pathway is shorter than the theoretically expected. The reason for this is as the follow s. For 

particles of significant difference in size, the wall effect near the large particles surface 

causes a bypass of part of the liquid through the less dense packing nearby the surface 

(distortion effect). Indirectly this is confirmed on 2-D model, Figure 10, where changes in 

pore type distribution are observed. 

 The permeability deviation from the conventional model (6) with constn =  lead us to 

analyse the behaviour of parameter n  in the range of complete binary mixtures, mixtures 

with minDD xx ≤  (mixtures with minDD xx >  represent bi-layer systems and are out of the 

investigation). For the analysed cases of Figure 11a, the minimum porosity was achieved at 

≈minDx  0.7 [16]. In assumption that the coefficient 0K  is almost constant and its variation is 

significantly smaller than the tortuosity (6), rearrangement of equation (1) gives  

 



 

20 

)ln(2
)}/()1(36ln{ 232

0

ε
εε avdKkn −=                     (12) 

 

 For the ratios dD /  = 13.3, 20, and 26.7, n  values calculated based on the measured 

permeability are shown in Figure 12. 

 

 

 

Figure 12. Dependence of n  on Dx  for 

data set of dD /  = 13.3, 20, and 26.7 

calculated by equation (12), points, and 

obtained correlation functions: 1 –  

parabolic fit, 2 –  fitting function (14). 

 

 

 The parameter n  of equation (3) in the range of provided experiments is between values 

0.4 – 0.5. A fitting procedure between n  and Dx  gives a parabolic function 

219325.002637.05.0 DD xx −− , curve 1, with a regression coefficient of 0.97. As a simplified 

correlation the following parabolic formula may be proposed 

 

25.0 Daxn −=                           (13) 

 

that in our case fits well data at a  = 0.1/0.652 ≈  0.2367, as seen on curve 2 in Figure 12 

 
22 )65.0/1.0(5.0 Dxn −=                       (14) 

 

 Simulation results with equation (1) are shown in Figure 11b, where the porosity is 

defined by (8) and the tortuosity is calculated using function (6) with the parameter n  
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modelled by (14). The model with the variable parameter )( Dxnn =  gives a good 

approximation of the experimental data. The comparison of the permeability profile in Figure 

11b with Figure 11a leads us to the conclusion of the importance of the )( Dxnn =  approach 

for modelling binary packings with δ  < 0.1. Substitution of (14) into the limiting 

permeability relation ( →δ  0) also shows a great effect on the permeability value. 

 Obtained results confirm the conclusion from [10,32]  that the permeability has a minimum 

region which does not coincide with the porosity minimum value, and the region of minimum 

k  becomes more concave with decreasing δ . 

 

4.5. Tortuosity and distortion effect near large particles surface 

 

 Decreasing n  from 0.5 to 0.4 with increasing Dx  to minDx  may be explained by the 

increase in the total surface area of large particles thereby increasing the fraction of the 

porous media involved in wall effect. When →δ  0 the volume involved in the wall effect 

will increase. 

 In spite of the scattering of the experimental data, as shown in Figure 13a, the proposed 

model gives a good trend for the tortuosity T  vs. Dx . 

 

 

        (a)                (b) 

 



 

22 

Figure 13. Experimental (points) and simulated dependence of the tortuosity T  on Dx  

( minDD xx ≤  = 0.7). (a) – Curves 1 – 4 Modelling by equation (6) with the poros ity function 

(8) and the parameter n  by relation (14), where 4 is the case of the particle size ratio δ  = 

0.01. (b)  – Influence of the parameter n  variation, equation (13), at different a  on the 

tortuosity for δ  = 1/36 (curves 1 – 5): 1 – a  = 0.278; 2 – 0.237; 3 –  0.204; 4 – 0.156; 5 – a  

= 0 ( n  = 0.5). Curve 6 corresponds n  = 0.5 at →δ  0. 

 

 The effect of the a  value on the tortuosity is shown in Figure 13b. When δ  = 1/36, a  = 0 

– 0.278 if we assume that the minimum porosity is reached at minDx  = 0.7, we can observe 

large changes in the tortuosity values as well as in the tortuosity profile if the packing quality 

is associated with the coefficient a  in equation (13). 

 It is possible to have binary packing approaches to the “ideal” conditions when the wall 

effect is minimised: 

 (i). For certain δ , the small particle packing within the skeleton void may approach to 

 the regular, hence, 00
dD εεε ⋅≈ . 

 (ii). Non-spherical particles, for instance rod-like, have a less pronounced wall effect and 

 therefore the liquid flow bypass through the zone close to the large particles surface may 

 be reduced. 

 (iii). If the ratio δ  is small enough, the introduction into the binary mixture of a limited 

 amount of a third particle fraction with particle size small enough to fill the void of the 

 binary mixture may diminish the porosity irregularity. In this case, the mixture becomes 

 ternary [12]. Something similar was observed in a cement paste-aggregate interfacial 

 transition zone in a variety of concretes [48,49]. 

 The above discussed effects of binary beds with particles of different sizes show that, to 

improve the quality of separation, attention must be paid to different aspects of packing. 

Parameters affecting permeability (ε , δ , T , etc.) show inter-dependence. Particular ly in 

separation processes the tortuosity of filter me dia can affect the filter efficiency by two ways: 

1) by inertial effect due to changing of flow direction in pore channels, and 2) by increasing 

with contaminants in porous media.  
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 In order to illustrate main separation processes region application, we have used a fore-

dimension graph, Figure 14. Typically, application regions of separation processes are 

overlapped. The same happens with using a theoretical background for these processes 

description. It can be illustrated with some examples: 1). Chromatography is applied to 

molecules and macromolecules separation as well as for virus, plasmids  and bacteria 

separation. In some cases, a macromolecule may be considered as a micro-particle. 2). A 

modified adsorption model for microparticles is used in deep bed filtration models. 3). 

Membrane processes – in some models an assumption of a solvated ion as a spheric al particle 

is used and applied in modified filtration theory. 4). Ultrafiltration is applied for molecules 

and macromolecules separation as well as for microparticles (colloids) separation. 

 The complexity of separation processes description is due to numerous separating systems 

physico-chemical properties and porous media types va riety. However, a term involving 

tortuosity should be applicable to the majority of porous media structure. 
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Figure 14. Scheme of separation processes with porous media application representing the 

following dimensions: pore size, porous media depth (thickness), handling concentration of 

separated substrates, and the size of separating substrates. 

 

5. Conclusion 

 

 The complexity of processes involved in the formation of granular beds results in the 

inter-dependence of main parameters included in the permeability k , especially a packing 

porosity ε  and tortuosity T . The bed porosity in the region of minimum ε  is affected by 

particle size ratio δ  and packing fractional content. 

 According to results discussed above, 4 regions on the dependence of minε  vs. δ  can be 

identified: 1). A region of δ  > 0.41 where a displacement mechanism acts upon particles 

(Figure 8, arrow A). 2). An intermediate region where a linear – mixing model is observed, 

for δ  = 0.2 (Figure 8, arrow B). 3). A region of partially disturbed arrangement of small 

particles in the void of the skeleton, 0.007 < δ  < 0.2 (Figure 8, arrow C). 4). A region of 

small particles arrangement close to the monosize packing, δ  < 0.007, η  > 0.90.  

 The developed approach is useful to understand binary mixture behaviors and shows that 

the approach based on the fractional porosity )( DD xε  and )( Dd xε  may be a useful tool for 

the control of the overall porosity, giving a new insight on mixture structure and reasonable 

explanations for the different types of the porosity and tortuosity behavior in the region of the 

minimum porosity.  

 The obtained experimental results s how that the parameter n  in the formula nT ε/1=  is a 

function of the packing content Dx  and may vary in the range of 0.4 – 0.5. The reason for n  

variation may be explained by the wall effect of the small particles arrangement occurring 

near the large particle surface. A model accounting for this effect is proposed and may be 

useful for transport phenomena analysis in granular bed filters. 

 To understand how the wall effect diminishes with the increase in the particle size ratio in 

a binary mixture, additional theoretical and experimental investigations must be undertaken. 
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Nomenclature  

 

a     correction coefficient for 0
dε  in the binary packing. 

D     diameter of large particles (m). 

d     diameter of small particles (m). 

avd    average particle diameter in the mixture (m). 

porD    pore diameter (m). 

thD    thought diameter (m). 

K     Kozeny’s coefficient. 

k     permeability (m2). 

L     bed thickness (m). 

eL    average  flow  pathway length in the bed (m). 

u     flow velocity (m/s). 

n     power order in Equation (6). 

T     tortuosity. 

0T     tortuosity of monosized packing. 

Dx    volume fraction of large particles in the total volume of particles in the mixture. 

minDx    volume fraction of large particles corresponds to the minimum mixture porosity. 

 

Greek Symbols 
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ε     overall porosity of a mixed bed.  

Dε    fractional porosity of the large size particle fraction.  

dε    fractional porosity of the small size particle fraction.  

minε     minimum porosity of a mixed bed.  

Minε     absolute minimum porosity of a mixed bed. 

ε D
0    porosity of a uniform bed of large particles. 

ε d
0    porosity of a uniform bed of small particles. 

0
dcε    corrected porosity of a uniform bed of small particles. 

δ     partic les size ratio, Dd /=δ . 

p∆    pressure drop (Pa). 

µ     liquid viscosity (Pa·s). 
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