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The conventional random pore model assumes a homogeneous cell distribution in the
gel matrix used to immobilize cells. However, the validity of this model is restricted
to values of the exponent R, between 1.8 and 2.25, of a model power function relating
the diffusivity coefficient in the matrix with the overall cell volume fraction in the
system. Based on the analysis of published data for diffusion in gels with immobilized
cells and on the homogeneous approach for the random pore model developed in a
previous work, a new, nonhomogeneous approach is proposed for R values outside the
range 1.8-2.25. To explain these data, two main types of nonhomogeneous cell
distribution were considered: (1) nonhomogeneous cell distribution in the gel for R >
2.25 (type 1) and (2) nonhomogeneity related with anisotropy of cell space orientation
when R < 1.8 (type 2). In the case of nonhomogeneity of type 1, the cell volume fraction
in the layers occupied by cells must be considered in place of the concept previously
used for homogeneous distribution, viz., the average cell volume fraction. This model
underlines that accumulation of cells in a thin layer close to the surface improves
their nutrient intake. For nonhomogeneity of type 2, the tortuosity of such a system
is smaller than should be expected if spherical cells were considered, thereby changing
the effective diffusion. The model proposed in this work proved to fit into several real
cases reported in the literature.

Introduction
There has been an increasing interest on the use of

immobilized cells and enzymes in environmental, phar-
maceutical, food, and biotechnologies.

To increase the overall productivity of immobilized cell
systems, a complete characterization of the phenomena
associated with the immobilization process is required.
Mass transfer limitations have been reported as a main
drawback of these systems, causing a reduction in the
overall reaction rate as a consequence of the reduced rate
of transport of nutrients inside the immobilization ma-
trix.

In a previous work (1), diffusion in pure gels and gels
with immobilized cells was analyzed and a model de-
scribing diffusion in a gel with immobilized cells was
developed and validated. The dependence of the diffu-
sivity coefficient η ) De/D0 on cell volume fraction φc for
a gel with immobilized cells was described as:

where

De is the effective diffusion coefficient in gel with im-
mobilized cells; Dg is the diffusion coefficient in pure gel;

D0 is the diffusion coefficient in bulk solution; ηg ) Dg/
D0 ) εg/Tg is the partial diffusivity coefficient in gel; ηc is
the partial diffusivity coefficient in immobilized cells
structure; εg ) 1 - φp is the gel porosity; φp is the polymer
volume fraction in gel; Tg is the pure gel tortuosity
(average ratio of molecule path to porous media thick-
ness); Tg(εc) is the tortuosity of gel matrix filled by cells
(small scale tortuosity), and Tc(εc) is the tortuosity created
in the matrix by cells presence (large scale tortuosity).

By introducing a complex tortuosity value, Tc(εc) ) 1/εâ

and Tg(εc) ) 1/εγ, where â and γ are order values (â < 1,
γ < 1), eq 1 can be written as

This model, developed assuming a homogeneous cell
distribution in the gel, was shown to fit with high
accuracy to experimental data.

Nevertheless, not all experimental data could be
explained on the basis of this model, particularly when
anomalously small or large values of the diffusion coef-
ficient De/D0 vs φc were measured. These cases must be
considered assuming a nonhomogeneous cell distribution
inside the gel matrix and will be the subject of the
following analysis.

Two main types of nonhomogeneous cell distribution
based on the random pore model will be considered
below: (1) nonhomogeneous cells or cells cluster distribu-
tion in a gel (type 1 nonhomogeneity) and (2) nonhomo-
geneity related with anisotropy of cells space orientation
(type 2 nonhomogeneity).
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Nonhomogeneous cell distributions have been de-
scribed in different immobilized cells applications. For
penicillin production, Behie and Gaucher (2) showed that
cell growth occurs mainly near the surface of the carra-
geenan beads (type 1 nonhomogeneity); the microphoto-
graph presented by the authors also demonstrates that
the cell’s main axis is preferentially oriented along the
bead’s radial direction (type 2 nonhomogeneity). Arnaud
and Lacroix (3) showed the existence of a high cell density
layer near the bead surface, concluding that the depth
of the cell layer depends on the fermentation conditions
and on physical parameters such as the bead diameter,
the kind of substrate, and the product diffusion coef-
ficients. De Backer et al. (4) noted the same effect, and
Hannoun and Stephanopoulos (5) found that, instead of
being well distributed throughout the gel, immobilized
growing cells are found in clumps forming dense layers
near the gel surface. They also showed that the presence
of 20% of dead yeast cells had no effect on solute
diffusivities.

Westrin and Axelsson (6) compared some published
experimental data that quantitatively express the effec-
tive diffusion coefficient as a function of φc, the cell
volume fraction, using well-known equations developed
for mass transfer in heterogeneous media. Some of the
data presented anomalous high or small effective diffu-
sion coefficients, exceeding the bounds of the applied
models. In the first part of their work, the authors have
shown that the homogeneous model (eq 2) could describe
the data by admitting values for R considerably larger
or smaller than 2.0, which in turn reduces the physical
meaning of the R parameter.

Korgel et al. (7) mentioned that the random pore model
predicts with high accuracy, in most of the situations,
sugar effective diffusivity in gels with immobilized cells.
Nevertheless, several data from the literature do not fit
into the applied models, and the reported experimental
values are clearly outside the 95% confidence limits for R.

De Backer et al. (4) used for the interpretation of
experimental data on glucose diffusion in immobilized
yeasts a value of 1.0 for R, meaning that tortuosity equals
1.0 if the relationship De/D0 ) ε/T is used (T stands for
the total heterogeneous system tortuosity).

In some cases (Riley et al. (8, 9), Westrin and Axelsson
(6), Libicki et al. (10), Chresand et al. (11), Ho and Ju
(12)), the Maxwell’s model, as described in eq 4 for the
diffusion in gels with immobilized cells, is applied for the
description and the explanation of high effective diffusion
coefficients (R < 2):

where D0 is the diffusion coefficient of a given species
through the continuous phase, and Dc is the diffusion
coefficient through the dispersed phase.

According to this model, the cells are considered as a
permeable phase and ratioDc/D0 is assumed to be in the
range 0 e Dc/D0 < 1. Nonpermeable cells correspond to
Dc/D0 ) 0. Living cells have specific permeability func-
tions for substrate and cannot be considered as a perme-
able unit similar to a membrane as in membrane
separation processes. This means that other reasons
must be found elsewhere for explaining observed high
effective diffusions in some immobilized cell systems.

By assuming a nonhomogeneous model in the present
work, we shall try to explain the experimental diffusion
discrepancies observed in several cases reported in the
literature.

1. Nonhomogeneous Cells or Cells Cluster Dis-
tribution in Gel (Type 1). An explanation to the
extreme values of R > 2.25 that were determined in the
experiments discussed above will be proposed in the
following pages.

When cells are concentrated near the bead (membrane)
surface it means that a gradient of volume fraction of
cells inside the gel matrix occurs. To study this problem,
a set of conditions will be postulated.

In the first place, a gel membrane with rod-shaped
immobilized cells and with an average volume fraction
of cells φc will be assumed. As it has been shown that in
these systems cells tend to concentrate near the mem-
brane surface, two gel layers will be considered. The first
layer will contain most of the cells, whereas the second
layer will exhibit a low or very low cell concentration,
assumed to be zero for model development. Behie and
Gaucher (2) showed the presence of this type of cell
distribution in gel beads used in a three-phase fluidized
bed bioreactor.

Using mass transfer coefficients, the ratio De/Dg for the
two layers system can be calculated. The total mass
transfer coefficient, k, is determined by the equation

where k1 is the mass transfer coefficient for layer with
immobilized cells, and k2 is the mass transfer coefficient
for the second layer with low cell concentration.

The mass transfer coefficient in an elementary layer i
can be written as

where Dei is the effective diffusion coefficient for the i
layer, Li is the thickness of the i layer. ηi is the ratio
εi/Ti ) (1 - φci)/Ti ) Dei/Dg, where εi ) (1 - φci) is the
porosity of the i layer; φci is the volume fraction of cells
in the i layer; and Ti is the tortuosity of the i layer.

Hence, when we consider the occurrence of two layers,
the mass transfer coefficient is

where L ) L1 + L2 is the membrane thickness, and δ )
L1/L.

From eq 7 we have

where ηci ) ηg(1 - φci)R is the diffusivity determined by
eq 2.

After rearrangement of eq 8, we have

where R is the parameter associated with the homoge-
neous model.

Assuming a homogeneous cell distribution for each
layer and R ) 2, as for the random pore model, eq 9 may
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be written as

and a more compact equation, in terms of porosity, is
obtained:

The average porosity of the bilayer system is calculated
as

Using eqs 10 and 11, we can estimate the value of R
as (9)

for δ ) 1 and δ ) 0, R ) 2.
Simplified examples of the model are shown in Figures

1-3. Assuming that the first layer contains all of the
immobilized cells and that the second layer is free of cells,
then ηc2 ) 1 for a pure gel and eq 9 can be simplified to

In Figure 3 we represent the situation corresponding
to a large value of R when the average porosity (or volume
fraction) of immobilized cells is used. The real dependence
of De/Dg on φc1 (eq 13) is also shown.

Whenever we have a nonhomogeneous cell distribution
in a gel and we try to fit the homogeneous model, the
value of R must be much larger than 2, which has no
physical meaning for this type of porous media.

In turn, if we assume the existence of two gel layers,
then the values for R calculated from eq 13 become
smaller and more reasonable. In other words, this is the
main reason for the large values of R when the homoge-
neous model of cells distribution in gel is applied to a
nonhomogeneous distribution.

Validation of this model requires an in depth knowl-
edge of biomass distribution in immobilization matrixes.
Although some authors, as previously mentioned, have
described the occurrence of higher biomass concentra-
tions near the gel surface, no accurate data were avail-
able describing biomass distribution throughout the
immobilization matrix. This aspect emphasizes the ur-
gent need of experimental data on the characterization
of cell distribution in immobilized cell systems.

2. Nonhomogeneity Related with Anisotropy of
Cell Space Orientation (Type 2). To explain the
occurrence of values of R < 1.8 in the case of the
homogeneous model, a nonhomogeneous cell distribution
in the gel may be assumed. This effect can be related
with a possible nonspherical shape of cells; they may be
ellipsoidal, rodlike, etc. Nonspherical overlapped cell

clusters can also be considered as asymmetric bodies. For
example, Riley et al. (8, 9), in a computer simulation of
cells distribution with arbitrarily overlapping positions,
obtained asymmetric clusters, which have a much greater
length in one direction than along another direction. The
phenomenon takes place when, instead of a random
distribution of cells or cell clusters, we have some kind
of preference for a defined cell orientation. A schematic

Figure 1. Variation of De/Dg with φc1 (see eq 13) for different
thickness values δ of the layer with immobilized cells, R ) 2.0.

Figure 2. Variation of R with φc1 for different values of δ of
the immobilized cell layer.

Figure 3. Dependence of De/Dg on φc1 (eq 13, for δ ) 0.2, R )
2.0 and for δ ) 0.5, R ) 2.0). The values of δ (cell layer thickness)
are marked on the graph. For any value of the overall cell
fraction φc, accumulation of cells in a thin outer layer is a
biological advantage as compared to an even cell distribution
(effective diffusivity is higher).
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representation of fully oriented cells may be seen in
Figure 4.

In the type 2 nonhomogeneity, two effects must be
taken into consideration. On one hand, we may obtain
different free cross-section areas for different flow direc-
tions. On the other hand, the tortuosity can be smaller
than should be expected for spherical cells.

Cross-Section Free Area. In the case of a regular
nonspherical cell arrangement, the average porosity and,
hence, the average cross-section free area available for
diffusion may differ in different directions.

Let us consider a hypothetical case when the prism
(Figure 4) represents the approximation to an ellipsoidal
cell of diameter d (prism width) and a length h ) nd,
where n is the ratio of prism length h to its width d.

First, it will be interesting to analyze the variation of
the prism average cross-section area on a normal surface
to the flow direction (A) for a different angle of orientation
θ (Figure 5a). The prism cross-section area during
rotation from the angle θ ) 0 to θ ) π/2 changes from a
square to a rectangle. The projection area with length l
and width d is fpr ) dl.

For the prism, oriented under an angle θ to the vertical,
the cross-section projection area fpr can be defined as (this
relation may be also used as the first approach for a
cylinder inscribed in the prism)

where angle θ1 corresponds to the largest cross-section

area and is defined as θ1 ) arccos(1/x1 + n2). With the
prism in vertical position, θ ) 0, fpr ) d2 and, for
horizontal position, θ ) π/2, fpr ) nd2. The dependence

of the dimensionless cross-section area fpr/d2 ) l/d on θ
is shown in Figure 6.

For further analysis, let us consider an elementary unit
of the porous media in the form of a cube of size h with
a prism of the same length inside. This approach allows
us to obtain simple relationships.

Average Void Fraction of the Unit and Free Cross-
Section Area. The average void fraction εav is defined
by the relation εav ) 1 - hd2/h3 ) 1 - 1/n2, which
coincides with the free cross-section area fraction εver

S )
1 - 1/n2 for vertical flow. However, for cell units in the
horizontal position, we have εhor

S ) 1 - 1/n. For n ) 2,
εver

S ) 0.75 and εhor
S ) 0.5, respectively.

Free Cross-Section Area Fraction vs θ. The free
cross-section area fraction εR

S in the point of symmetry
for different orientations of the prism inside the elemen-
tary unit is

For instance, for n ) 2 and θ ) 45°, εR
S ) 0.646; for θ

) 60°, εR
S ) 0.5 against εver

S ) 0.75.The comparison of the
free cross-area fraction εR

S of prism-like particle with a
sphere of the same volume εsp

S ) εav(sp) for different
volume fractions of solid φc in the elementary unit is
shown in Figure 7a. In Figure 7b is represented the
dependence of ratio εav/ε0

S for a cylindrical approach
(cylinder inscribed to the prism) on volume fraction φc
for different n ) h/d. In these figures, εav corresponds to
the average free cross-section area calculated for cylin-
ders with an angular orientation in the range of θ ) 0 -
π/2, and ε0

S corresponds to the free cross-section area for
cylinders oriented with θ ) 0°.

A dramatic change of εR
S (θ ) 45°) vs average void

fraction εav ) ε0
S when θ ) 0° for the cell volume fraction

φc > 0.3 is observed. Values of εav/ε0
S close to zero for the

cylinder approach are related with the fact that the cross-
section area overlapping effect for different layers was
not considered. Hence, a ratio De/Dg, determined in
experiment in the gel with immobilized nonspherical
shape cells and plotted vs average cell volume fraction
φc moves to the left side of a graph, and the curve De/Dg
vs φc looks more stretched (Figure 7, dashed lines). This
means that, in this case, we must use a correction
function a(φc) similar to ratio a(φc) ∝ (ε0

S/εav) in eq 1 or,

Figure 4. Graphs of cells or cell clusters oriented in one
direction represented in a prismatic simplified form, where d
and h are the width and length of the prism, respectively. A )
flow direction.

Figure 5. (a) Schema to determine the horizontal projection
area fpr and a pathway (arrows) tortuosity around a prism
inclined under angle θ to the vertical direction. Hatched
rectangles in the scheme are the cross-section areas, where l
and l ′ are the length of each cross-section. (b) Schema of
simplified calculation of the tortuosity around cylinder inscribed
to the prism: T ) 1/cos(æ), where æ ) f(θ). Calculation of
tortuosity was done according to the classical definition of Bear
(13).

Figure 6. Dependence on θ (deg) for different ratios n ) h/d of
the dimensionless cross-section area l/d ) fpr/d2of the prism
horizontal surface at the point of symmetry.

fpr ) {d2/cos(θ), for θ ∈ [0, θ1]
dh/sin (θ) ) nd2/sin(θ), for θ ∈ [θ1, π/2]

(14)

εR
S ) {1 - 1/[n2 cos(θ)], for θ ∈ [0, θ1]

1 - 1/[n sin(θ)], for θ ∈ [θ1, π/2]
(15)
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alternatively, use the real porosity (cross-section free area
fraction) in the flow direction:

Tortuosity. The above-mentioned second effect in
nonhomogeneous gels is related with tortuosity Tc(εc),
which has a dependence on cell volume fraction or
porosity εc other than the one for spherical cells. Tortu-
osity of partially oriented nonspherical cells is a complex
equation and will not be considered in this article.
Nevertheless, an overall estimation based on simplified
assumptions may be useful.

If we assume that tortuosity of nonspherical partial
oriented cells in the mass transfer direction is described
by the function Tc(εc) ) 1/εâ, then tortuosity must stay
between the following bounds: for all cells oriented
vertically Tc(εc) f 1 (â f 0) with cell concentration
decreasing; for all cells oriented horizontally, the tortu-
osity function is close to the tortuosity function for
spherical cells. Hence, for the type 2 nonhomogeneity,
values of â are smaller than 0.5, which are the corre-
sponding values for spherical cells, and values of R in eq
2 must be smaller than 1.8.

An excellent example of this phenomenon can be
observed in the work by Libicki et al. (10), where a
microphotograph of a system with nonspherical oriented
cells is shown, as well as a dependence of a relative
diffusive permeability is stretching. This can be related
with both the above-discussed phenomena.

Let us consider a flow in the vertical direction, as it is
shown in Figure 5a. Streamlines are shown in the
scheme, as well as a vertical cross-section on the cutting
surface that coincides with the streamlines. To simplify
the approach, we will use the cross-section in the point
of the symmetry (see Figure 5a).

This assumption provides a simple procedure for
2-dimensional tortuosity T ′ estimation. By considering
that tortuosity as the ratio between the effective stream-
line pathway and the minimal pathway length (13), then
the tortuosity caused by the cell contour is given by

It is also possible to make a simplified estimation of
the tortuosity pathway around the cylinder inscribed in
the prism (Figure 5b). Replacing a trajectory around an
ellipsoid by the line ABC, with a point B located on a
distance OB ) d/2, we obtain a simple geometrical
approximation:

Transition from 2-D to 3-D Tortuosity. Transition
from two-dimensional simulation of porous media to the
three-dimensional more real situation may be made
through a procedure based on the assumption of fractal
properties of porous media. Fractal porous media often
occur in nature (14-16). As mentioned by Vidales and
Miranda (16) for the case of T ) Le/L0 the channel length
of a random walk tends to a fractal walk as Le ∼ rD. Here
Le is the channel length, L0 is the porous layer thickness
or the path length in the empty space, r is the linear
dimension of the walking area, and D is the fractal
dimension.

It is possible now to define the 3-D tortuosity as T3D )
rD/r2 ) rD-2 and 2-D tortuosity as T2D ) rD ′/r ) rD ′-1,
where D and D ′ are the fractal dimensions of 3-D and
2-D channels, respectively. If in both cases the linear
dimension r is the same, then r ≈ T3D

1/(D-2) ) T2D
1/(D′-1), and

hence, T3D ) (T2D)(D-2)/(D′-1) ) T2D
m . This means that, as

long as we know the value for m, the 3-D tortuosity may
be estimated from the 2-D tortuosity.

Let us now see how m ) (D - 2)/(D′ - 1) can be
estimated. From the computer image simulation of 2-D
porous media of a binary mixture with particles of large
size ratio 15.75, as well as for ternary mixtures, a
simulation procedure presented in a previous work (17,
18), the fractal dimension of 2-D channels network was
measured as D ′ ≈ 1.3. The value of 3-D fractal dimension
was borrowed from Zosimov and Lyamshev (19) as being,
on average, D ≈ 2.45. Therefore, m ≈ 0.45/0.3 ) 1.5.

When D - 1 ) D ′ the tortuosity is constant T3D ) T2D.
It must be pointed out that a transitional value m is
sensitive to measurements and may be used only as an
estimate. If we postulate that the 3-D channel network
fractal dimension cannot be less than D ′ then m g 1.0.

Figure 7. (a) Dependence of εS for prism-like particle and sphere of the same volume on volume fraction of solid φc in elementary
unit. (b) Dependence of εav/ε0

S for cylindrical approach (cylinder inscribed to the prism) on volume fraction φc for different n ) h/d and
uniform angular orientation in the range of θ ) 0 to π/2.

η ) ηgηc )
εg

Tg
‚

a(φc)‚εc

Tc(εc)‚Tg(εc)
(16)

T ′ ) 1 + d
l ′ (17a)

T ′ ) 1
cos(æ)

) AB

AO
) x1 + d2

(l′)2
(17b)
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More detailed analysis of this problem will be devoted
in a special article.

For the conversion from 2-dimensional tortuosity T ′
to three-dimensional tortuosity T we can apply the
transmission function T ) (T ′)3/2. Therefore, for the prism
we obtain

and, for the cylinder approach, we will have

The maximum tortuosity corresponding to the hori-
zontal position of the prism or of the cylinder is equal,
respectively, to 2.83 and 1.685. These values lie in the
range of tortuosity of particle packed beds. The minimal
tortuosity for a vertical position of the prism and of the
cylinder is T ) (1 - 1/n)3/2 and T ) (1 + 1/n2)3/4,
respectively. As we can see, the tortuosity T f 1.0 with
increasing values for the dimensionless length n.

Now, it is possible to estimate a value of â for tortuosity
Tc ) 1/εâ using eq 18b, cylinder approach, and the data
by Yu et al. (20) for a mono-sized cylinder layer with
different n. Data obtained by Yu et al. (20) can be
approximated, in the range of n up to 15.5, by a linear
function (19) with a correlation coefficient 0.9968:

We may calculate the average tortuosity from eq 18
for homogeneous cell distribution and the porosity ε from
eq 19. Then, we can estimate â ) -ln(T)/ln(ε) as follows:
for n ) 1.5, â ) 0.4; for n ) 2, â ) 0.338; for n ) 3, â )
0.284, and for n ) 4, â ) 0.259. In addition, it must be
pointed out that, from Yu et al. (20), the effect of packing
density and cells length distribution must be taken into
consideration (see Table 1). Table 1 contains data calcu-
lated on the basis of â determined above for a mono-sized
cylinder pack (εm and Tm), as well as for a loose and dense

packing of cylinders with log-normal length distribution
(εl and Tl) and (εd andTd), respectively.

Finally, the approach developed above was applied to
data presented by Ho and Ju (12), who reported high
values for the ratio De/Dl where Dl is the oxygen diffusion
coefficient in a fermentation medium containing 0.5 wt
% of sodium carboxymethylcellulose for preventing cell
sedimentation (see Figure 8). Three types of microorgan-
isms were investigated. For the interpretation of the
experimental data, we used the information on cell sizes
referred by the authors. thus, for S. cerevisiae, we used
5 × 8 µm (assumed n ) 1.5); for E. coli, 0.5 × 2 µm (n )
4), and P. chrysogenum was considered as a long rod (we
assumed n ) 4). For the calculations shown in Table 2,
eq 16 under the form of eq 20 was used together with
the graphs of Figure 8b for a(ε0

S/εav)

where R ) 1 + â. Results of calculations based on the
developed approach are shown in Table 2.

The model curves for each microorganism, together
with the experimental data from Ho and Ju, are pre-
sented in Figure 8. It is clear that the model fits well

Figure 8. Comparison of experimental data of D0/Dl for oxygen diffusion in fermentation media by Ho and Ju (1988) and proposed
model: (a) S. cerevisiae; (b) E. coli; (c) P. Chrysogenum. Points are experimental data. Lines are the prediction by eq 20.

Table 1. Dependence of Average Tortuosity on n and on
Type of Packing of Layers

n
εm

monosized
εl loose
packing

εd dense
packing

Tm
monosized

Tl loose
packing

Td dense
packing

1.5 0.3437 0.45 0.325 1.528 1.376 1.568
2 0.356 0.46 0.344 1.417 1.3 1.434
3 0.382 0.472 0.356 1.315 1.238 1.341
4 0.408 0.5 0.38 1.262 1.2 1.285

Table 2. Examples of Calculation for the Model (Eq 20)
to Fit the Data from Ho and Ju (12)

microorganism n â R φc a(ε0
S/εav) De/Dl

S. cerevisiae 0.1 1.0546 0.91
1.5 0.4 1.4 0.2 1.134 0.83

0.3 1.259 0.764
E. coli 4 0.259 1.259 0.1 1.03 0.902
P. chrysogenum 4 0.259 1.259 0.1 1.0 0.876

De/Dl ) a(ε0
S/εav)(1 - φc)

R (20)

T ) (1 + d
l ′)

3/2
(18a)

T ) (1 + d2

(l ′)2)3/4

(18b)

ε ) 0.3053 + 0.02557n (19)
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into the experimental data taken from microorganisms
with substantial differences in shape.

Another example is shown in Figure 9, where data on
oxygen diffusion in natural cell aggregates (square
points) and artificial cell aggregates (cross points), re-
ported by Libicki et al. (10), are presented. The proposed
model prediction is presented as well. From a micropho-
tograph presented in that article, the parameters n ) 2
(â ) 1.338) were determined. The range of cell axis
orientation was determined to be 0 - π/4. Line 1
represents the calculation by formula De/D0 ) a(ε0/εav)(1
- φc)1.338 with the correction from Figure 7b. Line 2 shows
the tortuosity effect, without using the correction function
a(ε0

S/εav): De/D0 ) (1 - φc)R. As was mentioned above, the
model has limitations in the zone of large cell volume
fractions, which might be related with the cell overlap-
ping effect.

The goodness of fit of the model described by line 1
proves that shape and orientation of cells must be
considered in nonhomogeneous gels. As we can see, even
for simplified models, the relationship between system
parameters with immobilized cells is complex. The aver-
age volume fraction is a function of the layers thickness,
and R is also a function of layers thickness, of the cell
shape, of the cell distribution between the layers, and of
the cell orientation inside the gel matrix.

Although only a reduced number of experimental
results was used to validate type 2 nonhomogeneity, the
presented information is enough to confirm that the
developed approach is useful and can explain observed
anomalous low and high values of diffusivity obtained
in some immobilized cell systems.

Conclusion

As shown by the analysis of published data, not all
experimental data can be described using a simple
homogeneous random pore model. For the random pore
model, where the conventional order value for R is 2, the
range of possible variation may be R ) 1.8-2.25. A
random pore model must describe all data that lie outside
this range with a nonhomogeneous cells distribution
inside the gel.

As was shown, two main types of nonhomogeneous cell
distribution can be considered: (1) nonhomogeneous cells
or cells cluster distribution in gel when R > 2.25 (type 1)

and (2) nonhomogeneity related with anisotropy of cells
space orientation when R < 1.8 (type 2).

For the nonhomogeneity of type 1, the cell volume
fraction in the layer or layers occupied by cells must be
considered instead of the average cell volume fraction in
the gel.

For the nonhomogeneity of type 2, the average cross-
section free area available for diffusion does not coincide
with the cross-section free area calculated as the average
value, especially for high cell loadings. Tortuosity of such
a system will be smaller than it would be if it was
obtained with a spherical cell approach.

The approach presented in this work may be useful
for modeling and analysis of bioreactors whenever the
conventional random pore model for diffusion is not valid.

Furthermore, this work puts in evidence the absence
of reliable information on the phenomena associated with
the use of immobilized cell systems, clearly demonstrat-
ing that much work needs to be done on the character-
ization of the transport properties in these systems and
its relation with biomass physiology and activity.
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Notation
Dc diffusion coefficient through cells
De coefficient of effective diffusion in gel with

immobilized cells, cm2/s
Dg coefficient of effective diffusion in pure gel,

cm2/s
Dg* diffusion coefficient in parts of gel of cell-

containing gel not occupied by cells
D0 coefficient of diffusion in bulk liquid, cm2/s
Dl oxygen diffusion coefficient in fermentation

medium
d cell diameter or an approximating cylinder

diameter
h length of the cylinder or cell
fpr cross-section area of the cylinder or prism

located in the center of symmetry
k mass transfer coefficient
k1 and k2 mass transfer coefficients in the gel layers 1

and 2
L1 and L2 thickness of the layer 1 and layer 2
n ) h/d dimensionless length of the cylinder or prism
T tortuosity
Tc tortuosity created by cells
Tc1 and Tc2 tortuosity created by cells in the gel layers 1

and 2
Tg the tortuosity of gel matrix
R order value in eq 2
δ L1/L dimensionless thickness
εc average porosity of two layers system
εc1 and εc2 porosity of gel layers 1 and 2
εg ) 1 - φp gel matrix porosity
φc cell volume fraction for homogeneous cell

distribution in the gel matrix
φc1 and φc2 cells volume fraction in the layers 1 and 2
φp polymer volume fraction in the gel
η ) De/D0 overall diffusivity coefficient
ηg ) Dg/D0 partial diffusivity coefficient in pure

gel

Figure 9. Comparison of Libicki et al. (1988) data for diffusion
of oxygen in natural cell aggregates (square points) and artificial
cell aggregates (cross points) with proposed model prediction.
Line 1 is calculation by formula De/D0 ) a(ε0/εav)(1 - φc)1.338 and
line 2 shows the tortuosity effect only: De/D0 ) (1 - φc)R.
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ηc ) De/Dg partial diffusivity coefficient in im-
mobilized cells

ηc1 ) De1/Dg ) εc1/Tc1 diffusivity coefficient in gel
layer 1

ηc2 ) De2/Dg ) εc2/Tc2 diffusivity coefficient in gel
layer 2

θ angle between the vertical position and the
cell axis

Subscripts

1 high cell concentration layer
2 low cell concentration layer
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