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Abstract 

This paper deals with possibility of information entropy usage for porous media structure characteristics description. The 
paper presents the results of preliminary investigation of the possibility using information entropy parameter for porous 
media. The first approach of the method presented in the paper confirmed the possibility to get the join characteristic of 
porous media. The method may give a new point of view on the problem of porous media modelling. The examples of 
entropy calculation for distributions of pore by size and length as well as for multi-layers porous media joint entropy are 
given. 
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1. Introduction 

The processes with porous media play an impor- 
tant role in nature and technique. The correct de- 
scription of  porous media is basic for the analysis 
and investigation phenomenon takes place inside 
them as well as the separation properties of  the 
media: fluid dynamics [1]; adsorption [2]; chro- 
matography [3]; membrane processes [4]. The exist- 
ing porous media models abound with a large num- 
ber of  parameters and their application often presents 
a hard-to-solve problem [5]. 

Pore media characteristics on average approach 
the basis of  the structure elements irregularity or 
regularity (it can be pore size, pore length or porosity 
distribution, etc.). Porous media integral properties: 

permeability, heat and mass transfer, etc., are deriva- 
tives of their joint structure irregularity [6-8]. Many 
researchers point out the joint effect of  different 
media properties. This may be found in the majority 
of the articles mentioned herein. So, the problem of 
porous media description, analysis and prediction is 
still a task for applied science. New methods and 
equipment are involved in the investigations of  this 
problem. 

For instance, nuclear magnetic resonance spec- 
troscopy and neural networks were used for gel pore 
size prediction based on data obtained from gel 
filtration chromatography and diffusion experiments 
[9]. The method seems too problematic for wide 
application because of  complicated equipment and 
training neural network requirements. It has meant 
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passing to other types of porous media for a new 
calibration of the method. The method of fractal 
geometry in combination with tomography and com- 
puter modelling [ 10-12] give new information about 
the materials structure. 

Image analysis, 2D and 3D computer modelling 
[13,14] allows the possibility to obtain a multi-di- 
mensional correlation of pore structure properties. 

New experimental and theoretical data as well as 
a practical application of materials are of the barest 
necessity to elaborate the joint criteria for describing 
porous media integral properties. The ways to solve 
this problem do not come from a fractal approach, 
computer modelling or statistics. 

By summing up fractal dimensions in two direc- 
tions it is possible to obtain surface fractal dimen- 
sions [15,16]. It is possible by measuring the totality 
of modelling capillary pores with a uniform distribu- 
tion upon the axis direction of the desired coordinate 
system to obtain some quantitative characteristics of 
porous media isotropy [17]. However, it is not possi- 
ble with the methods mentioned to obtain a sum- 
marised value of different irregularity properties 
(size, length, porosity, etc.). 

Two examples explain the situation. Very often in 
practice an expert must compare different porous 
media samples with each other in order to choose the 
appropriate porous media. 

Example 1. Heterogeneous one layer porous me- 
dia. The samples have different distributions of pore 
size, pore length, etc. These parameters determine 
the separation properties of the samples. The expert 
can use two ways: test or use experience + intuition. 
If an integral approach to the criteria, that show the 
general value of porous media irregularity, could be 
found the expert would be able to optimise the 
choice or build a new porous medium on the basis of 
the given data. 

Example 2. Anisotropic or multi-layer porous me- 
dia. The problem of multi-layer porous media char- 
acterisation is very real for anisotropic membranes as 
well as for multi-layers filters. BETA filter bags 
from Rosedal Products, for example, contained about 
11 layers [18]. Anisotropic membranes can charac- 
terise 2-3-4 layers. In this case it is very difficult to 
use the average values of pore size, length, etc., 
which arise from the probable distribution of the 
characteristics of total media irregularity. 

Some integral characteristics were developed from 
the thermodynamic theory basis that was adopted for 
dispersed systems liquid-solid and porous media. 

2. Thermodynamic approach 

Various thermodynamic models have been used 
for dispersed systems and separation processes. The 
concept of entropy and free energy have been used 
for developing criteria for the separation efficiency, a 
criterion of the separation process makes it possible 
to make an estimation of sediment porosity, etc. A 
brief overview of the research is given in [19] and 
[20]. 

Concept of the method of application. A very 
small solid particle is treated simply as if it was a 
large molecule. In this case it is possible to use the 
entropy S from molecular thermodynamics 

S = k in(W) ,  

where k is the Boltzmann constant that is trans- 
formed to the normalized coefficient and W is the 
value of multiplicity. 

The problem of the methodical application of this 
approach arises for non-mono-sized particle fractions 
and in the case of multi-fraction mixtures of parti- 
cles. The idea developed with sedimentation [21]. 
The model operates on the porosity of the sediment 
and suspension and does not have particle size distri- 
bution and other parameters of porous media (sedi- 
ment). 

Nevertheless, the method gives some criteria by 
which to calculate the separation process efficiency. 
A more effective solution to the integral characteris- 
tic of porous media can be reached using the princi- 
ple of information entropy and theory of information. 

3. Information entropy 

Information theory provides a quantitative mathe- 
matical description of systems designed to communi- 
cate or manipulate of information. It sets up a quanti- 
tative measure of information and of the capacity of 
various systems to transmit, store and otherwise 
process information [22,23,32]. Information in the 
context of this paper presents a particular choice of 
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one type of description of a porous media (" mes- 
sage") from a set of possible alternate descriptions. 

The information entropy is the expected value of 
this amount of information and can be considered to 
be the average information of the message set. 

The information measure has the following main 
qualities [24]: 
1. The information in separate, independent out- 

comes should be additive. 
2. Information should be proportional to the uncer- 

tainty of the source outcome. 
3. The quantity of information should relate to the 

number of symbols needed to define the outcome. 
The measure that satisfies these three is the ex- 

pression l n [1 /P (X) ]  with X the outcome of the 
source and P ( X )  its probability. 

If a physical system of random variables has 
different results then it posses some uncertainty. The 
measure of the indefinite system can be a value of 
information entropy H. According to the theory, if 
we have a variety X, then for every event x i ~ X the 
entropy corresponds 

H ( x , )  = - l n [  p ( x i )  ] , (1) 

which is the quantitative measure of the event uncer- 
tainty. The quantity of uncertainty for all totality of 
random events is averaged as follows 

H ( X )  = - ~ p(  xi)ln [ p(  x i ) ] ,  (2) 
i = 1  

where p ( x  i) is the probability associated with sym- 
bol i. The least possible information corresponds to 
maximum entropy, that is, when Pl =P2 = ... =Pn 
= 1/n .  

The joint entropy of n independent random values 
is 

= H , ( X )  + H2( X)  + ... = E H i (  X) ,  
1 

(3) 

In the most simple case the amount of information is 
I ( X )  = - H ( X ) .  Usually the information I is pre- 
sent as a difference between the entropy of the 
outcome "message" and the entropy of the "mes- 
sage" after reception. 

As pointed out [25] the correlation between en- 
tropy and information resemble in some sense the 

correlation between the physics notion of the poten- 
tial and the difference of potentials. Entropy is an 
absolute measure of information and information is 
related to the definite change in experimental condi- 
tions. 

The information approach has some limitations. 
The information determines the probable properties 
of events only, as the value that has no variety does 
not have information. 

The information theory was developed as a theory 
of determining the quantity of sending and receiving 
information through a communication channel and 
for other applications, of course, needs additional 
criteria of information quantity and quality descrip- 
tion. In this paper attention will be paid to the 
information entropy properties of porous media. 

4. Application of information approach in applied 
science 

The information approach is used for analysis of 
processes: rectification, absorption, adsorption, fluid 
flow, mixing of bulk materials, etc. [26]. Usually 
these were binary systems. The principle of the 
analysis was named the information-entropy method 
but its interpretation of information entropy is closer 
to thermodynamics than to information. 

Every stream in a technological process can be 
considered as a stream of information and the Gibbs' 
potential can be used for the investigation of streams 
[27]. The point of count out of solving the informa- 
tion task was the condition H = 0 and the initial 
conditions of the process streams was H > 0. Pro- 
cessing can be considered as reducing the uncer- 
tainty by means of doing work and receiving infor- 
mation I = - H. 

Assuming the processes are irreversible: 

l , = l o - A I  . ,  

where I n is the quantity of information in an irre- 
versible process, I o is the quantity of information in 
a reversible process and A/0-are information losses 
at the expense of the process irreversibility. 

Information can presented by the equation 

k 

I = E Pi ln(Pi) ,  (4) 
i = 1  
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where k is the number of states that information 
stream can take as a result of transformation in the 
chemical-technological process, Pi = N i / N  is the 
probability of the /-state of the information stream. 

The information state before and after transforma- 
tion evaluated by the Gibbs' potential Z under the 
conditions of total stream energy constancy: 

Z =  f (  p;t;N1;N2 ;...;N~), 

where p is the pressure and t the temperature. To 
the state N,. corresponds the value A Z i of the poten- 
tial changing in the technological stream 

N i = Nexp(  -- A Z i / R T  ) . 

The potential counted out from the "zero" level 
Z 0. It means for all other states Zi > 0. Hence 

Pi = N,./N = exp( - A Z i /R T  ) . 

Substitution of Pi in Eq. (4) gives 
k 

1 o = ~_~ [ - (AZ i /RT)exp (  - A Z i / R T ) ] .  
i = 1  

The value of the process information perfection 
evaluated through the information coefficient of effi- 
ciency is 

qq in f  : I . /Io = 1 - A l J l o ,  1 _> "qinf > 0. 

The following equation resulted: 

noutput  = n i n p u t ( 1  - ' q in f ) "  

The method described above does not give objec- 
tive models and criteria for systems such as porous 
media since it does not take into account the struc- 
ture elements, for instance size distribution, etc. 

Theory of information for biological membranes. 
The information principles used for the description 
of transport phenomenon in biological membranes 
was formulated as follows [28]: the membrane serves 
for information transfer (ions and molecules transfer 
through the membrane channels), moreover the vital 
importance has quality (cost) not quantity of infor- 
mation. The quality (cost) of information may be 
determined in the result analysis of the received 
message only. The quantity and cost of information 
may change in determined cases in opposite direc- 
tions. Biological membranes do not transfer informa- 
tion only but serve as a selector of information 
quality. 

If  we move from the position of process analysis 
such as the information stream, to examine processes 

such as information channels (communication for 
information transfer), it is possible to find some new 
approaches for modelling processes with porous me- 
dia. 

5. Application of information concept to porous 
media 

The information theory application to porous me- 
dia description has been debated [29-31]. Below the 
value of the information entropy will be used as the 
porous structure irregularity measure. 

The structure elements totality can be present as a 
random or a continuous probabilistic ensemble that 
can be determined for a discrete variable as a multi- 
tude X with a given probability distribution p(x){X, 
p(x)}. For a continuous variable the ensemble can be 
present as {X,f(x)},  where f ( x )  is the probability 
density function. 

The information entropy for continuous distribu- 
tion with a probability density function f ( x )  can be 
present as follows [32]: 

H ( X )  = - f _ ~ f (  x ) I n [ f (  x ) ]dx .  (5) 

The value of H ( X )  in this case, the opposite 
discrete variable, Eq. (2), may be negative and may 
become infinitely large. 

It is this property that makes the information 
entropy different from the thermodynamics entropy. 
However, the information entropy values can be 
compared with each other: 

A H  = H , ( X )  - H 0 ( X ) ,  (6) 

where Ho(X) and HI(X) are the values of entropy 
for two different f (x) .  

5.1. Pore size distribution 

A simple type of variable X distribution (Simp- 
son distribution) can be considered for clarity: 

[ 2 h ( x -  a ) / ( b -  a), x ~ [a,mx] 
f ( x )  = ( 2 h ( b _ x ) / ( b  a), x ~ [ m x , b  ] (7) 

[ ( b - a )  ~/~- ] 
H ( X )  = - I n ( h )  + 0 . 5  = I n  2 

= l n [ ( b - m x ) f e ] ,  (8) 
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where mx = (a + b)/2 and h = 2/(b  - a) are the 
average of x and the maximum of  f ( x ) ,  respec- 
tively. 

I f  we take into consideration that x is, for exam- 
ple, the membrane pore size, a and b are the maxi- 

mum and minimum pore s ize  (Xmi n = a ,  Xma x = b) ,  

accordingly, and if H(X) is interpreted as the mea- 
sure of  membrane pore irregularity in terms of pore 
size, the following qualitative conclusions on H(X) 
can be done: the degree of  structure element irregu- 
larity is decreased with decrease of pore size varia- 
tion range (b  - a). The H(X) follows it. 

The possibil i ty of  comparison arises for porous 
media, with different ranges of  structure elements 
variation within a definite distribution f (x) ,  if  infor- 
mation entropy is taken as a measure of  structure 
irregularity of  elements X. 

The shortcomings of the method discussed is the 
ideal porous media model  with identical size of  all 
pores that cannot be described here because A = b - 
a - - * O , H ( X ) ~ - ~ .  However  in real objects an 
ideal porous media model  is not realised because of  
negligible but finite deviation of the random variable 
X from the average value m x. When the porous 
media is approaching the ideal model  the inequality 
m x - 8 < x < m~ + 8 always takes place. Here 8 has 
a finite small value, and H(X) has a finite value 
also. 

Example. For even pore size distribution the aver- 
age pore size m x = ( a + b ) / 2 ,  then H ( X ) =  
l n [ 2 ( m x -  a)] = l n [ 2 ( b -  mx)]. If  pore size x has a 
deviation from the average value m~ in the range 
_ 0 . 0 1 m  x, the entropy value is H(X) = ln(0.02m x) 
= - 3 . 9 4  (for convenience m x = 1). For  deviation 
_+0.001m x and +_0.O001m~ the value of  H ( X ) =  
- 6 . 2 1  and H ( X ) =  - 8 . 5 1 7 .  As we can see, even 
for a small deviation of pore size from the average 
value, H(X) is relatively not far from the point 
H(X) = 0. The same is expected, for instance, for a 
n o r m a l  d i s t r ibu t ion  x ~ ( - ~ , w ) ,  H ( X )  = 
ln(cr 2 ~ e  ), where ~r is the standard deviation. 

Consider a more general case for different types 
of  random variable in the range x > 0 and put a list 
of information entropy as follows (expressions of  
f ( x )  are given in Appendix A): 

(1) Exponential distribution 

H ( X )  = In(e /h)  = ln (em~)  = 1 + ln (mx)  

m x = 1 / h  

m x = EX is the expectation of  the variable. 

(2) Gamma distribution 

H ( X )  = ln[F(~)] - (~ - 1)tb(ot)  + e~ - l n ( h ) ,  

EX = et/h 

where qJ(a) is the tb-function, 

~ , ( ~ )  = d [ l n ( F ( ~ ) ) ] / d ~ .  

(3) Log normal distribution 

H ( X ) = l n ( [ 3 e m ~ ) = l n ( [ 3  2 ~ e ) + m  

m is the expectation of  ln(x) .  

(4) Weibull distribution 

H ( X )  = 1 + - - ( c  + l n ( h ) )  -- l n ( e th )  
(g 

c = 0.5772 

As we can see, even for the same expectation of  
the variable, we have a different value of  the infor- 
mation entropy for different distributions. On the 
other hand if the degree of irregularity H(X) is 
given, the type of  variable distribution f ( x )  can be 
selected thus the desirable range of  variable x chang- 
ing is ensured. 

Since H(X) for continuous distributions of  ran- 
dom variable is unlimited in value, in some cases for 
analysis it may be more suitable to introduce limita- 
tions of  H(X). The choice of limits depends on 
conditions used in the task analysis. For instance, in 
ana lys i s /compar i son  of  porous media the boundary 
conditions for the variable range are the following: 
(1) minimal: porous media should have minimal 

standard deviation O'mi n or range of deviation 5rain; 
(2) maximal:  porous media should have maximal  
standard deviation O'ma x or range of  deviation Bma~' 

The task is different for porous media analysis 
within the desired range of the variable. In this case 
we have Hmin(X) and Hm,~(X), hence we may use 
the following formula for the analysis: 

H( X ) - Hmin(X) 
U * ~  

n m a x ( X )  --  n m i n ( X )  ( 9 )  

i fHmax(X ) > H ( X )  > Hmi~(X).  

When the purpose of  analysis is selection porous 
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media with H(X) more or less the established limit point which complies with the specified boundary 
one side limitation can be used: conditions: 

AH =H(X) -Hmin(X) 

=Hmin(X)[H(X)/H,i,(X) - ‘I> 

AH =Hm,x(X) -H(X) 
(10) 

=Hmx(W -H(X)/Hrilax(X)l. 

H,in(Y)=ln[h(k,in-l)l, (12) 

where kmin is the minimal degree of system disorder 
for tortuosity and h the porous media thickness. 

The value of H(X) depends on the scale of 

variable used (microns, mm, etc.). The parameter 
x * E [0, l] may be used for unification: 

x - Xmin 
X *= 

(11) 
X max - Xmin ’ 

Let us take the simplest case, that of even distri- 

bution of a random value y: 

H(Y)=ln[(b-h)]=ln[h(b/h-l)] 

=ln[h(k,- l)], (13) 

where b is the maximum capillary axis length; b/h 
= k, > 1 is the greatest ratio of capillary axis length 
to layer depth (the greatest tortuosity). Hence 

6. Application of information entropy 
AH=H(Y) -H,,,i,(Y) =ln 

6.1. Distribution of structural elements axes in length 
Here instead of k, and kmin we may use the 

average coefficients of tortuosity ( k, ) from distribu- 
tions. 

Consider a heterogeneous medium with ” fibrous ” 
(fibre-shaped) or “channelled” channel-shaped ele- 

ments. Such media may include some types of capil- 
lary-porous materials, foams, foamed polymers, 
membranes, filters, composite materials, etc. Ab- 
stracting from the type of the cross-section of ele- 
ments, to a first approximation we can consider the 
distribution of their axes lines in lengths. Assume 

that the distribution of structural elements in length 
is specified by a set Y and examines this phe- 
nomenon on porous media with through pores. 

In this case it is possible to evaluate numerically 

and qualitatively entropy properties of certain types 
of porous media and to select optimal value of 

tortuosity. 
Suppose that for two porous media the equality 

H(Y) = H(Y’) = constant is to be satisfied. Then in 
the simplest case of even distribution of Simpson 
distribution we have: 

h/h’= (k’- l)/(k- l), (15) 

where k = (k,) and k’ = (k; >, k, and k; are coeffi- 
cients of pore tortuosity of two media, respectively. 

4.2. The simple examples of distribution of porous 

media in lengths 

Consider a one-dimensional variant of length dis- 
tribution of non-intersecting through capillaries ig- 
noring the existence of dead end and closed on one 
surface capillary. In this case the smallest capillary 
length is equal to the depth of the porous media h in 
the direction normal to the surface of mass transfer. 
Assume that the length of the capillary and its 
diameter are independent. 

For numerical analysis assume h = 10, k’ = 2 then 

for all media having the same value H(Y) and the 
same distribution law of the random value y the 
equality h(k - 1) = 10 is to be satisfied, in other 
words if H(Y) = 5 the coefficient of tortuosity must 
be equal to 3; H(Y) = 100,k = 1.1, etc. As we see, 
the degrees of disorder of porous media greatly 
depend on pore tortuosity. 

If in evaluating pore (capillary) distribution in 
length we specify the minimum possible or desired 
relationship of capillary axes length y from the ideal 
( y = h), then by analogy with pore distribution in 
sizes we may take the value H,,.,,,(Y) as a starting 

With all other things being equal it is necessary: 
. to minimise H( Y > to solve the transfer problem, 

i.e. to decrease pore layer depth and pore tortuosity; 
- to solve the problem of deep bed filtration for 

ensuring catching of dispersed phase it is necessary 
to maximize H(Y), i.e. increase the tortuosity. The 
qualitative conclusions do not disagree with practical 
results. 
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Consider for illustration some numerical exam- 
pies. Let us estimate how information entropy incre- 
ment is changing in some hypothetical porous media 
with Simpson pore tortuosity distribution or even 
distribution when increasing or decreasing factors 
m = h/h '  or n = k /k '  for cases: 
1. The total layer depth h changes at the constant 

value of  mean pore tortuosity k = constant. 
2. The coefficient of  tortuosity k changes at fixed 

total layer depth h = constant. 
Let h' and k' denote the initial depth and the 

tortuosity coefficient of the porous medium, respec- 
tively. Entropy increment with the change of  the 
layer depth by a factor m with is equal h = mh' to: 

A H = H ( Y )  - H ( r ' )  = I n ( h / h ' )  = In (m) ,  

k = k' = constant. (16) 

With the change of  the tortuosity coefficient by a 
factor of  n with k = k'n 

k ' - l ] '  

h = h' = constant, nk' > 1. (17) 

The result of  the calculations are presented in Fig. 
1, where curve 1 corresponds to Eq. (16), the change 
of  cake layer depth with the constant coefficient of 

AH 

4 - i .......................... SIZIS:L:--~-- . . . . . . . .  

i ! I ! 

. . . . . .  .............................. .................................. ] . . . . . . . . . . . . . . . . . . . . . . . .  ............................. . . . . . . . . . . .  

i ; 

1 2 3 4 5 

m ,  n 

Fig. 1. Relat ion be tween  A H  and  m,n. 1, A H  vs. m with 

k =  k ' =  constant;  2 - - 5 ,  A H  vs. n with h =  h ' = c o n s t a n t  for  

different  k ' :  2, k'  = 10; 3, k' = 2.0; 4, k' = 1.5; 5, k' = 1.1. 

AH 

6 

• i i 
4 -  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . .  

21 • ........ i 1 . . . . . . .  

0 i 

- 6 /  , i , i , I , i , i , i . ~  
1 2 3 4 5 6 7 8 

k "  

Fig. 2. A H vs. k' (see text). 

tortuosity. Curves 2 -5  illustrate the calculations by 
Eq. (17) with constant layer depth for k' = 10, 2, 1.5 
and 1.1, respectively. 

Qualitative conclusions drawn from the obtained 
relations are consistent with practice. They are as 
follows: 

as regards the creation of  a more ordered 
structure (improvement of  transfer properties) of thin 
porous layers, especially membranes, depth de- 
creases h with k = constant is less effective than 
pore tortuosity coefficient decrease k with h = 
constant; 

• on the other hand, if k is close to 1, then even 
a little change of  tortuosity in the direction of  its 
increase results in multiple increment of information 
entropy A H, Fig. 1, curve 5 (the tortuosity may be 
change, for example, by means of  porosity variation, 
changing type of  particles packing or mixing parti- 
cles of  different size fractions); 

• to increase retention in depth filters it is more 
effective to increase k with h = constant, but with 
k~l this advantage is levelled as compared with the 
increase of h with k = constant, and A H  ~ In(m). 

The conclusions may be illustrated diagrammati- 
cally by Fig. 2, where curve 1 corresponds to the 
change of  A H  with h = constant, n = 2, and curve 
2 results from the same conditions but with n = 1/2 .  

In summery let us consider the condition of  joint 
compensation of  porous layer depth changing by 
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factor of m with h = h’m and tortuosity coefficient 
k = k’n: 

AH=ln[ “(l”r “1 =constant (18) 

For convenience let us take for simplifying the 

constant equal to zero and k’ = 2. As a result we 
obtain a number of coupled relations between m and 

II, satisfying the condition of AH = constant. 

m 10 5 3 2 1 l/2 l/4 l/5 
n 11/20 3/5 2/3 3/4 1 1.5 2.5 3 

In other words, if the producer of porous medium 

increases its depth by a factor m, it is possible to 
ensure the constancy of information entropy incre- 
ment AH = constant as compared with a basic stan- 
dard by way of appropriate correction of tortuosity 

coefficient value. 
Condition (18) with k’ z+ 1 goes over into ap- 

proximate equation A H = ln( mn) = constant. 
Analogous conclusions may be reached for pore 

distribution in size as for example in the case of 
Simpson distribution: 

AH=H(X) -H(X’) =ln 

=ln[ “(iX”li I)]. (19) 

where m, = (m) is the average pore size, SX = b/ 

m, is the ration of the largest pore size to the 
average pore size; m = m,/mL; n = 6,/6:. 

6.3. Information entropy of multilayer porous media 

Industry often use multilayer media with indepen- 
dent distribution of structural elements in layers, e.g. 
membrane with porous backing, multilayer filters. 

Let us deal with the distribution of lengths of 
structural elements in multilayer media. We assume 
that structural elements of one layer pass into struc- 
tural elements of the other layer. With permeable 
multilayer porous media it means continuity of capil- 
laries through the whole volume of a porous layer, 
Fig. 3. As previously, the diameter and length of 
pores are assumed to be independent. 

0 x 

Fig. 3. Diagram of a two-layer porous material. 

For multilayer media with independent parame- 
ters, joint information entropy is 

H,(Y)=H,(Y)+H,(Y)+...+H,(Y) 

= kHi(Y), (20) 
i= 1 

where H,(Y > is the mean information entropy (de- 
gree of disorder of i-layer structural elements). 

The proposed method shows the way to monitor 
the summary value HZ( Y > by changing the parame- 
ters of individual layers. It can be done during design 
and building porous media. Of course the entropy by 
itself does not give the solution and must be corre- 
lated with the properties of porous media. 

Example 1. Suppose that for effective filtration in 

two-layer porous media. The first layer serves for 
capture of main part of particles. The second layer 
serves for retention control of most smallest particles 
passed through the first layer. Assume the system 
degree of disorder H,(Y) must be = 3. Let us 
describe the pore distribution in the lengths of both 
layers by Simpson’s distribution. Let us assume that 
the second filtering layer characterized by H2( Y) = 
- 0.19 that corresponds to h, = 2, k, = 1.5. To 
comply with the condition of H,(Y) = 3 it is neces- 

sary to match such degree of disorder of the first 
layer. 

Joint entropy of two independent random values 
is 

HZ(Y) =H,(Y) +H,(Y)* 

whence 

(21) 

H,(Y) = HZ( Y) - H2( Y) = 3 - (-0.19) = 3.19. 
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Thus the degree of disorder of the first layer must 
be 

Hi(Y ) = l n l ~ - h l ( k  1 - 1)1 =3 .19 .  

Specifying the coefficient of tortuosity k I we 
obtain the depth of the first layer complying with the 
condition of Hx(Y) = 3: 

k I = 2, h 1 = 29.48; 
k I = 3, h i = 14.74; 
k 1 = 3.5, h i = 11.8. 

Thus if entropy characteristic of filtering medium 
is known and the value of joint entropy of the system 
"first + second layers" is specified we can select the 
parameters of a filtering material necessary to form 
the first layer (if of course the correlation between 
the entropy and filtration properties layer is known). 

Qualitative results of the example show that selec- 
tion of the first layer material with the greater coeffi- 
cient of tortuosity k I allows for the layer with less 
depth. A great coefficient of tortuosity is characteris- 
tic of needle shape or fibrous filtering materials, and 
as it is known by experience with all other things 
being equal, the required depth of the first layer from 
fibrous material is less than the depth of the layer 
from granular material. 

Example 2. Membrane with backing. Suppose 
that the membrane itself is characterized by informa- 
tion entropy Hi(Y) = - 0 . 8 9  (k~ = 1.5; h i = 1). It is 
necessary to match the porous backing which could 
provide the degree of disorder Hx(Y) < 1 for two- 
layer porous medium (membrane + backing). So, the 
required value of Hz(Y) of the backing determined 
as 

H2(Y) =ln[--~-h(k2-1)]=Hx(Y)-HI(Y) 

-- 1.89. 

As a result if the backing has k 2 = 1.75, its depth 
h 2 is = 10.7. 

It is necessary to stress once again that the given 
results are qualitative, they do not supersede quanti- 
tative calculations. However the method developed 
gives the possibility in the future to correlate the 

transfer phenomena and the degree of disorder of 
structural elements of porous media. 

6.4. Information entropy of independent random pore 
distribution in sizes and lengths 

In case of independence of random values ensem- 
bles {f(x),X} and {f(y),Y} we can obtain joint 
information entropy H(X,Y) by summation of H ( X )  
entropy of pore distribution in sizes and H(Y) en- 
tropy of pore distribution in lengths: 

H(X,~') = H ( X )  + H ( Y ) .  

If the density of pore distribution in sizes f ( x )  is 
characterized by beta-distribution and f ( y )  by Simp- 
son distribution, then 

H(X,Y) = l n [ a ( b -  a) ( k -  1)h] ,  (22) 

where A = V~-/2.52, b and a are the largest and the 
smallest pore sizes, respectively, k is the mean 
coefficient of tortuosity and h is the depth of the 
porous layer. 

Let us analyse the relation obtained. As follows 
from Eq. (22) system disorder "pore length + pore 
diameter" decrease with narrowing of the interval 
(b - a) and (k - 1). It results in the decrease of pore 
size deviation from the mean value and pore length 
deviation from the layer depth h. 

Depending on the function of the porous medium, 
the importance of pore size and length variations for 
the general criterion, i.e. joint information entropy 
H(X,Y), will be different, and it can be taken into 
account by introducing the notion of information 
value or functional penalties. But this problem is not 
to be discussed here. 

As an example of porous media approaching the 
idealised capillary model of a porous body we may 
consider the Anopore membrane with pore size of 
about 0.2 txm retaining of 100% of latex particles 
having a size of 0.23 p,m, which has capillaries with 
little tortuosity: b - a ~ min; k - 1 ~ min. 

The qualitative conclusions, that the transfer prop- 
erties of the porous medium are improved with the 
decrease of system degree of disorder, are supported 
by the phenomena observed in practice. In particular, 
it is stated that the hydraulic resistance of the layer 
consisting of the particles of wide fraction is greater 
than that of the layer with the same average size of 
the grain but of narrow fraction. 



288 A. Yelshin / Journal of Membrane Science 117 (1996) 279-289 

6. 5. Information entropy for numerous parameters 

A quantitative characteristic of porous materials 
isotropy in any desired directions. For this purpose 
as a measure a totality of capillary pores modelling 
by uniform distribution upon axis direction of de- 
sired coordinate system proposed [17]. In the model 
pores in different direction are not intersect each 
other. The idea was through the pore size distribution 
found average value of pore size upon desired direc- 
tions and used this value as measure of porous media 
isotropy. 

The information entropy approach may be useful 
for working out a quantitative characteristic of porous 
materials isotropy in any desired directions. By means 
of H it can be made for instance through joint 
entropy of pore size distribution upon desired direc- 
tions (for example, Euclidean directions x, y and z): 

nr(  X , V , Z )  = nr (  X ) -}" Hr( Y ) -]- n r (  Z ) 

3 
= E n r ( i ) ,  ( 2 3 )  

i=1 

where Hr(i) is the entropy of pore size distribution 
upon desired direction i. 

Even more, in principle, for independent proper- 
ties joint entropy H(Joint) is 

H(Joint) = ~ ~ Hpj(i), (24) 
j = l  i=1 

where Hpj is the entropy of a property j upon 
direction L For instance, property He1 is the pore 
size, He2 the pore tortuosity, Hp3 the specific frac- 
tion of active area or active centres in pores (cataly- 
sis processes), etc. up to Hem. But it is a special 
problem that needs careful investigation and experi- 
mental testing. 

7. Conclusion 

The first approach of the method of using infor- 
mation entropy presented in this paper confirms that 
it is possible to obtain the joint characteristics of 
porous media and may give a new point of view on 
the problem of porous media modelling. Industry has 
a large experience in design and produce porous 
materials with given properties and the method de- 

scribed above may assist in the analysis of the 
medium joint characteristics that comprise its differ- 
ent properties. 

It is hoped that the quantification of porous media 
structure irregularity via information entropy value 
would open the possibility for both experimental and 
theoretical investigations of links between the "in- 
formation dimensions" and various transport phe- 
nomenon in porous media. 
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Appendix A 

A. 1. The List of some distribution for x > 0 

(1) Exponential distribution 

f ( x ) = k e x p ( - k x )  x > 0 , k > 0  

(2) Gamma distribution 

h ~ 
f ( x ) = - - x ~ - % x p ( - k x )  x > 0  

(3) Log normal distribution 

1 [ ( In(x)  - m) 2 

f ( x )  = x[3 2¢2-~-w e x p [ -  2[32 

(4) Weibull distribution 

f ( x ) = e L k x ~ - % x p ( - k x  ~) x > 0  

x > 0  
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